Logo Ernst und Sohn

Preview

Author(s):     
 
Abbasnia, Reza; Nav, Foad Mohajeri
 
Title:     
 
A theoretical method for calculating the compressive arch capacity of RC beams against progressive collapse
 
Abstract:     
 
Compressive arch action is one of the main resistance mechanisms against progressive collapse in reinforced concrete (RC) buildings. Hence, many studies have investigated the development of arching action in RC beams and frames but less attention has been paid to calculating the corresponding enhancement in structural capacity. In the present study, a theoretical method is introduced in order to calculate the arching capacity of RC beams and also to obtain a quantitative assessment regarding structural robustness against progressive collapse. The proposed method is validated using the experiments in the literature. The evaluation indicates that the procedure introduced here could establish a reliable foundation for estimating the arching capacity of beams and also structural robustness.
 
Source:     Structural Concrete 17 (2016), No. 1
 
Page/s:     21-31
 
Language of Publication:     English



I would like to buy the article

You can download this article for 25 € as a PDF file (1.44 MB).
The PDF file can be read, printed and saved.
Duplication and forwarding to third parties is not allowed.


Please enter your email address now to start the order process.
The link for the download will be sent to the email address stated after the
order process has been completed.

Your email address


I am an online subscriber

As an online subscriber of the journal "Structural Concrete" you can access this article via Wiley Online Library.

I would like to order "Structural Concrete"

This article has been published in the journal "Structural Concrete". If you would like to learn more about the journal, you can order a free sample copy or find out more information on our website.


Prices include VAT and postage. Prices for 2017/2018.
€ Prices apply to Germany only. Subject to alterations, errors excepted.