Logo Ernst und Sohn

Preview

Author(s):     
 
Zhou, Lin-Yun; Liu, Zhao
 
Title:     
 
Investigation of the buckling behaviour of thin-walled hollow concrete piers
 
Abstract:     
 
Tall hollow concrete piers with high width-to-thickness ratios are commonly used in long-span box girder bridges. Such thin-walled structures present the possibility of failure due to local buckling. So, in common practice, diaphragms are usually included in hollow piers to improve the local stability; however, is that necessary? Although experimental research on the buckling behaviour of hollow piers has been conducted extensively, few analytical attempts have been performed to reveal the effects of the width-to-thickness ratio on local buckling behaviour. To this end, an analytical model has been proposed to investigate the local buckling behaviour of hollow piers. Following the Ritz-Timoshenko method, an analytical formula for critical local buckling stress has been developed and verified to have good accuracy compared with finite element analyses. Based on the buckling failure mode of a hollow pier with a slenderness ratio > 6, it can be reasonably postulated that the strength of the hollow pier will be unaffected by local compression flange buckling when the wall width-to-thickness ratio is < 24, and it is entirely unnecessary to include diaphragms in hollow piers for stability. Additionally, it is equally interesting that the critical width-to-thickness ratio of a hollow pier with a slenderness ratio > 4 derived using the proposed model is the same as the value given by the current AASHTO-LRFD Bridge Design Specifications.
 
Source:     Structural Concrete 17 (2016), No. 3
 
Page/s:     491-501
 
Language of Publication:     English



I would like to buy the article

You can download this article for 25 € as a PDF file (0.97 MB).
The PDF file can be read, printed and saved.
Duplication and forwarding to third parties is not allowed.


Please enter your email address now to start the order process.
The link for the download will be sent to the email address stated after the
order process has been completed.

Your email address


I am an online subscriber

As an online subscriber of the journal "Structural Concrete" you can access this article via Wiley Online Library.

I would like to order "Structural Concrete"

This article has been published in the journal "Structural Concrete". If you would like to learn more about the journal, you can order a free sample copy or find out more information on our website.


Prices include VAT and postage. Prices for 2017/2018.
€ Prices apply to Germany only. Subject to alterations, errors excepted.