abo_giftabo_onlineabo_printabo_studentabo_testangle_leftangle_rightangle_right_filledarrow_big_downarrow_big_down_filledarrow_big_leftarrow_big_left_filledarrow_big_rightarrow_big_right_filledarrow_big_uparrow_big_up_filledarrow_dropdown_downarrow_dropdown_uparrow_small_leftarrow_small_left_filledarrow_small_rightarrow_small_right_filledarrow_stage_leftarrow_stage_left_filledarrow_stage_rightarrow_stage_right_filledcaret_downcaret_upcloseclose_thinclose_thin_filledcontactdownload_thickdownload_thick_filleddownload_thindownload_thin_filledebookeditelement_headlineelement_labelelement_relatedcontentlockmailminuspagepage_filledpagespages_filledphoneplusprintprint_filledquotationmarks_leftquotationmarks_rightsearchsendshareshare_filledshoppingcart_bigshoppingcart_big_filledshoppingcart_headershoppingcart_smallshoppingcart_small_filledsocial_facebooksocial_linkedinsocial_pinterest social_xsocial_xingsocial_youtubesocial_twitteruser_biguser_small

Artikeldatenbank

Filter zurücksetzen
  • Autor(en)

  • Sprache der Veröffentlichung

  • Erschienen

  • Rubrik

Zeitschriften-Selektion

  • Alle auswählenAlle abwählen
Autor(en)TitelZeitschriftAusgabeSeiteRubrik
Yanaka, Makoto; Ghasemi, Seyed Hooman; Nowak, Andrzej S.Reliability-based and life-cycle cost-oriented design recommendations for prestressed concrete bridge girdersStructural Concrete5/2016836-847Technical Papers

Kurzfassung

There are several methods available to decide appropriate design recommendations to prevent corrosion of reinforcing steel in prestressed concrete bridge girders. With respect to chloride-induced corrosion, in the present study two methods are considered. The first one is based on the target probability of corrosion initiation and the initial cost. The other method is based on the life-cycle cost that includes the initial cost, maintenance cost, and expected failure cost. This paper deals with the development of recommendations for durability design of structures in marine environments from the reliability point of view, taking into consideration the life-cycle cost of a structure. In order to address the problem, the chloride diffusion coefficient of a cracked area under service load is obtained considering opening and closing motion of cracks. Utilizing the diffusion coefficient of a cracked area, the development over time of the chloride concentration at the surface of reinforcement can be predicted. This information is used to quantify the probability of initiation of corrosion of prestressing steel as well as the distribution of life-cycle cost. Based on the findings, recommendations for durability design in various exposure environments are developed.

x
Colajanni, Piero; Recupero, Antonino; Spinella, NinoIncreasing the flexural capacity of RC beams using steel angles and pre-tensioned stainless steel ribbonsStructural Concrete5/2016848-857Technical Papers

Kurzfassung

This article presents an experimental programme on reinforced concrete beams retrofitted with steel angles and pre-stressed stainless steel ribbons to increase their flexural strength and ductility. Two different configurations of the steel ribbon were designed, and two companion specimens for each type considered were subjected to a four-point bending test to facilitate a direct comparison in the analysis of the effectiveness of the retrofitting technique. The influence of longitudinal steel angles and transverse stainless steel ribbons is analysed, and the concrete confinement due to stainless steel ribbons examined. The strengthened beams show remarkable increments in flexural strength and ductility with respect to the as-built beam. Moreover, a simple cross-sectional model was adopted to calculate the flexural strength; then sophisticated numerical tools were used to reproduce both the experimental load-displacement curve and crack pattern for each specimen.

x
Confrere, Adeline; Michel, Laurent; Ferrier, Emmanuel; Chanvillard, GillesExperimental behaviour and deflection of low-strength concrete beams reinforced with FRP barsStructural Concrete5/2016858-874Technical Papers

Kurzfassung

The primary objective of this new study of fibre-reinforced polymer (FRP)-reinforced concrete (RC) beams is to evaluate the mechanical performance of RC beams made of low strength concrete internally reinforced with FRP. The use of FRP rebars with low compressive strength concrete is desirable in order to avoid the accelerated corrosion processes that could occur with steel rebars. For this purpose, an experimental programme was designed to identify the failure modes and bending behaviour. The experimental results are compared with equations from ACI 440.1R-06, CSA S806-12 and other design codes as well as with other results from a review of the literature.
The comparisons indicate that the resistance moment is well predicted by codes for flexural failure. At ultimate loads, the deflection of the beams is further underestimated compared with the deflection of Reinforced Concrete beams with a higher compressive strength. An analytical simulation of 690 beams indicates that deflection is the major limiting criterion at the serviceability limit state.
Finally, the formulation problem of the optimal FRP design for reinforced concrete beams can be turned into a programming problem. The space of the feasible design solutions and the optimal solutions can be obtained using only a reduced number of design variables and an existing design method.

x
Zhou, Linyun; Liu, HuanginResponse of cracked simply supported concrete beam with moving vehicle loadStructural Concrete5/2016875-882Technical Papers

Kurzfassung

The dynamic response of a cracked beam subjected to moving loads has been studied extensively in the past decades. However, very little is known about the dynamic impact factors and crack propagation when vehicles move along the cracked beam. It can be reasonably postulated that a crack extension may occur when the vehicle loads cross the cracked bridge at a high speed. As a result, the dynamic response will be enlarged significantly due to the flexural rigidity reduction induced by cracks, which may result in a dangerous effect on structures. To address this problem, a three-dimensional vehicle-bridge model was developed to investigate the dynamic response of cracked bridges with crack breathing. Crack breathing is simulated at the crack surface using contact elements. The modified crack closure method is adopted to calculate the stress intensity factors. The results showed that the impact factors for the damaged bridge under a moving load could be notably larger than those for the intact bridge, and could exceed the value specified in the AASHTO bridge design code. Meanwhile, crack propagation may occur when the vehicles move along the cracked bridge at a high speed. So, it is very necessary to limit the velocity and transverse position of the vehicles to avoid further damage to the cracked bridge.

x
Maghsoudi, Mohammad; Maghsoudi, Aliakbar; Heshmati, Arash AliThe monitored and theoretical ultimate moment and ductility of pre-tensioned HSSCC bridge girdersStructural Concrete5/2016883-895Technical Papers

Kurzfassung

Self-compacting concrete (SCC) is defined as highly flowable and non-segregating concrete that does not require mechanical vibration during application. Load testing of bridge girders was investigated on full scale T-beams of pre-tensioned high strength self-compacting concrete (PHSSCC). The girders were monitored by fixing different types of sensors at different locations.
The results of ultimate moment are compared to evaluate if such girders can be designed using AASHTO Load and Resistance Factor Design (LRFD) Specifications; AASHTO Standard Specifications for Highway Bridges (STD) and the PCI Bridge Design Manual are intended for structures constructed using conventional (non-vibrated) concrete. It is concluded that good agreement in results exists for the two methods.
Investigations (theoretical and experimental) are needed on the issue of ductility in structural prestressed elements constructed in seismic zones or even, the issue of high strength in SCC. These have also been studied here, with the conclusion that suitable ductility for this type of structure, as would be needed in seismic regions, can be achieved.

x
Aykac, Sabahattin; Kalkan, Ilker; Tankut, TugrulFlexural strengthening and repair of RC slabs by adding a new RC layerStructural Concrete5/2016896-909Technical Papers

Kurzfassung

The present paper summarizes the findings of an experimental programme to investigate a strengthening/repair technique through the introduction of a new RC layer to an existing slab. Six RC slabs, composed of twelve cantilever and six interior spans, were tested under monotonic transverse loading. The behaviour of statically determinate cantilever spans and indeterminate interior spans was examined by comparing the test results of these specimens to the results of reference slabs, in which the existing and additional layers were cast monolithically. The influences of recovering the permanent slab deformation before repair and the spacing of the shear connectors between the existing and additional layers were investigated. The tests indicated that recovering the permanent deformations of a slab before repair substantially reduces its rigidity while having little influence on the ultimate load. Furthermore, debonding of the reinforcement was observed to considerably decrease the load capacities and rigidities of the slabs.

x
Contents: Structural Concrete 4/2016Structural Concrete4/2016Contents

Kurzfassung

Keine Kurzfassung verfügbar.

x
Doniak, Íria Lícia OlivaLocal and global integration for a sustainable futureStructural Concrete4/2016520-521Editorials

Kurzfassung

Keine Kurzfassung verfügbar.

x
von Greve-Dierfeld, Stefanie; Gehlen, ChristophPerformance-based durability design, carbonation part 2 - Classification of concreteStructural Concrete4/2016523-532Technical Papers

Kurzfassung

At present, prescriptive regulations with regard to concrete cover and composition are applied to provide sufficient durability of reinforced concrete members under exposure conditions with different degrees of severity. In view of current knowledge on deterioration mechanisms and their modelling, it is planned to change from these deemed-to-satisfy specifications to a performance-based design approach in future standards. In such specifications, concrete durability design is based on the statistically characterized performance of concrete, determined in standardized tests with respect to defined classes of concretes with similar performance.
This paper presents the results of a study in which concrete mixes were tested and analysed with respect to their carbonation resistance. Compositions with similar performance are grouped into carbonation resistance classes. These classes are described statistically and requirements for performance testing are given. In addition, composition requirements are introduced in order to determine concrete performance depending on mix composition prescriptively. Finally, an example is given for the assessment of concrete performance with regard to carbonation.
This work was carried out at the request of JWG under CEN TC 250/SC2 and CEN TC 104/SC1 as an input and starting point for the ongoing committee work to implement the methodology from the fib Model Code for Concrete Structures 2010 in the next generation (2021) of European concrete standards.

x
Andrade, Carmen; Cesetti, Alessandro; Mancini, Giuseppe; Tondolo, FrancescoEstimating corrosion attack in reinforced concrete by means of crack openingStructural Concrete4/2016533-540Technical Papers

Kurzfassung

The corrosion of reinforcement in concrete is the most common degradation phenomenon of reinforced concrete structures. Reinforced concrete elements subjected to corrosion generally crack due to the expansive nature of oxides. One very important task is estimating the corrosion level using a non-destructive method in order to establish both the actual safety of the structure and a priority intervention plan.
Many researchers have studied the relationship between the corrosion phenomenon and the corresponding crack openings and their evolution; several statistical analyses, based on test data from experimental campaigns under a wide range of test conditions, are available.
The present work attempts to contribute to finding a relationship between the crack opening and the amount of corrosion induced in the reinforcing bars. The result of the analysis is that only a reduced number of tests can be used to establish an empirical model based on a reliable set of test data. A simple relationship between crack opening and corrosion penetration is not recommended, due to the different parameters that are able to influence this correlation. Therefore, two fundamental parameters, the ratio of the concrete cover to the rebar diameter and the concrete strength, have also been considered. The considerations made regarding these parameter test results have been rearranged and the result is a formulation that shows reduced scatter.

x
Hussein, Luaay; Amleh, LamyaAnalytical modelling of bond stress at steel-concrete interface due to corrosionStructural Concrete4/2016541-552Technical Papers

Kurzfassung

An analytical model is proposed for bond stresses at the corroded steel-concrete interface in reinforced concrete. The concrete around the corroded bar is modelled as a thick-walled cylinder - consisting of an inner cylinder of an anisotropic material and an outer cylinder made of an isotropic material - subjected to internal pressure exerted by the growth of corrosion products on the concrete wall at the interface. A frictional model is used to combine the action of confining pressure due to radial pressure produced by principal bar ribs and the pressure resulting from expansion of corrosion products. The analysis results using the proposed model show good agreement with the experimental results of several researchers.

x
Zych, MariuszModification of the simplified method of crack control included in EN 1992-3Structural Concrete4/2016553-563Technical Papers

Kurzfassung

The methods of crack control for liquid-retaining RC tank walls are analysed taking into account external load (EN 1992-1-1) and imposed strain occurring at the construction stage (EN 1992-3), i.e. during the concrete-hardening period. The convergence ranges of the simplified method of crack control included in EN 1992-3 and the detailed calculation methods included in EN 1992-1-1 and EN 1992-3 are defined. Apart from the compatibility areas, overestimation of the acceptable reinforcing bar diameter &phgr;s*, illustrated in Fig. 7.103N in EN 1992-3, was proved. Coefficients k&phgr;1 and k&phgr;2 are defined, which enable the calculation of the acceptable reinforcing bar diameter &phgr;s* in order to obtain the values complying with the direct calculations. For practical purposes, graphs have been plotted to facilitate the definition of coefficients k&phgr;1 and k&phgr;2 without performing direct calculations. On the basis of the analyses performed and the relations proposed, it can be concluded that there is a possibility or a necessity to increase or decrease the acceptable reinforcing bar diameter &phgr;s* depending on the concrete mechanical properties and geometrical properties of an RC tank wall.

x
Tian, He; Zhang, Y. X.; Yang, Chunhui; Ding, YiningRecent advances in experimental studies of the mechanical behaviour of natural fibre-reinforced cementitious compositesStructural Concrete4/2016564-575Technical Papers

Kurzfassung

This paper presents a review of recent research and development work involving natural fibre-reinforced concrete (NFRC). The recent developments in NFRC reinforced with different types of natural fibre, such as sisal fibre, bagasse fibre, coir fibre, banana fibre, eucalyptus fibre, flax fibre, jute fibre and pinus radiate fibre, are covered. Natural fibres and their modification methods are introduced first and the development history of natural fibre-reinforced concrete and the relevant research into the mechanical behaviour of NFRC in both the short- and long-term are reviewed. The applications of NFRC are also summarized.

x
irgulis, Giedrius; vec, Old ich; Geiker, Mette Rica; Cwirzen, Andrzej; Kanstad, TerjeVariation in fibre volume and orientation in walls: experimental and numerical investigationsStructural Concrete4/2016576-587Technical Papers

Kurzfassung

Previous research with fibre-reinforced slab elements has shown that the surface roughness of formwork and the presence of rebars affect fibre orientation and fibre volume distribution. This paper discusses the orientation and volume distribution of steel fibres in wall elements cast from a single point. Aparticular focus of the work was the effect of formwork tie ba rs on fibre orientation and distribution. Numerical simulations and X-ray computed tomography were appliedto quantify the fibre orientation and distribution, and the mechanical performance was determined using three-point bending tests on sawn beams. The Thorenfeldt model (applied in the Norwegian proposal for the new fibre-reinforced concrete guideline) was used to estimate the residual flexural tensile strength based on fibre orientation and distribution.
The simulation results show that the fibre orientation can be related to the flow pattern. The results indicate a large variation in fibre orientation, which was confirmedexperimentally. The fibre volume distribution was mostly uniform, except for an area with fewer fibres at the casting point. The large variation in fibre orientation was reflected in a large variation in residual flexural tensile strengths. Weak zones due to anisotropic fibre orientation, caused by formwork tie bars, were observed.

x
di Prisco, Marco; Martinelli, Paolo; Parmentier, BenoitOn the reliability of the design approach for FRC structures according to fib Model Code 2010: the case of elevated slabsStructural Concrete4/2016588-602Technical Papers

Kurzfassung

This paper focuses on the reliability of the design approach proposed in the fib Model Code for Concrete Structures 2010 for estimating the ultimate capacity of fibre-reinforced concrete (FRC) elevated slabs on the basis of different tests for material characterization. The fracture properties of the material are determined through three-point bending tests on notched beams and through double edge wedge splitting (DEWS) tests carried out on cylinders cored in the full-size test structure. As a case study, an FRC elevated flat slab 0.2 m thick is considered which consists of nine bays (panels) measuring 6 × 6 m (overall size 18.3 × 18.3 m) and is supported by 16 circular concrete columns. The ultimate bearing capacity of the slab determined experimentally is compared with the design value predicted by means of a procedure based on limit analysis following fib Model Code 2010. The results show that the method proposed in fib Model Code 2010 using the characteristic values and the classification is reliable. Even if the tests are affected by a significant standard deviation and the two experimental campaigns with three-point bending tests give a significant difference between class “5c” and class “3e”, the structural test results in a loadbearing capacity that is always larger than the predicted one, which considers a safety coefficient for the material &ggr;F = 1.5.

x
Simões, João T.; Bujnak, Jan; Ruiz, Miguel Fernández; Muttoni, AurelioPunching shear tests on compact footings with uniform soil pressureStructural Concrete4/2016603-617Technical Papers

Kurzfassung

Punching shear is usually the governing failure criterion when selecting the depth of reinforced concrete footings. Despite the fact that large experimental programmes aimed at the punching strength of slender flat slabs have been performed in the past, only a few experimental campaigns on full-scale compact reinforced concrete footings can be found in the literature. This paper presents the results of an experimental programme including eight reinforced concrete footings with a nominal thickness of 550 mm. These experiments investigated the influence of column size, member slenderness and the presence of compression and shear reinforcement. The tests were performed using an innovative test setup to ensure a uniform soil pressure. The experimental results show that slenderness influences the punching shear strength as well as the effectiveness of the shear reinforcement. The experiments also show that an important interaction occurs between bending and shear for high levels of shear force near the column (the typical case of compact footings or members with large amounts of shear reinforcement). Different continuous measurements recorded during the experimental tests allow a complete description of the kinematics and strains at failure. On that basis, experimental evidence is obtained showing that crushing of the concrete struts near the column is the phenomenon that triggers the punching failure of compact footings.

x
Mobin, Jalal Salehi; Kazemi, Mohammad Taghi; Attari, Nader K.A.Cyclic behaviour of interior reinforced concrete beam-column connection with self-consolidating concreteStructural Concrete4/2016618-629Technical Papers

Kurzfassung

A significant amount of research on self-consolidating concrete (SCC) technology has been devoted to evaluating the suitability of the material for its use in structural applications. However, more research is required to confirm the adequacy of SCC structural members for resisting gravity and seismic loads. This study focuses on the experimental investigation of the seismic performance of interior reinforced concrete beam-column connections with SCC. Four beam-column connection specimens, three with SCC and one with normally vibrated concrete (NC), were designed for this experimental study. Factors such as concrete type (SCC or NC) and axial load ratio (0, 7.5 and 15 % of column section capacity) were assumed to be the variables in designing the specimens. Beam-column connections made with NC and SCC were studied and compared under reversed cyclic loading. The performance of SCC specimens is comparable with NC specimens in terms of strength, displacement and ductility, but SCC specimens show lower energy dissipation capacity.

x
von der Haar, Christoph; Marx, SteffenDevelopment of stiffness and ultrasonic pulse velocity of fatigue loaded concreteStructural Concrete4/2016630-636Technical Papers

Kurzfassung

Damage processes in fatigue loaded concrete structures depend on the number and amplitude of the load cycles applied. Damage evolution is linked to a reduction in concrete stiffness, and it is thought that this reduction causes stress redistributions at component level which have a favourable impact on the service life of a structure. Until now, the stiffness reduction and stress redistribution have never been successfully measured in laboratory tests or in situ. It is only known that the real service life is longer than the calculated one and that indicators of stiffness reduction, such as component deflection, increase with the number of load cycles applied.
Ultrasonic measurement techniques are considered to be well suited to detecting degradation processes caused by cyclic loading. It is expected that the stiffness reduction in fatigue loaded concrete structures can be recorded reliably with ultrasonic pulse velocity measurements. In the light of this, fatigue tests were performed on small-scale concrete specimens. The aims of the tests were to understand the correlation between the observed stiffness degradation of the specimens and the results of ultrasonic pulse velocity measurements and to estimate the potential for using ultrasonic pulse velocity measurements in continuous structural health monitoring.

x
Hümme, Julian; von der Haar, Christoph; Lohaus, Ludger; Marx, SteffenFatigue behaviour of a normal-strength concrete - number of cycles to failure and strain developmentStructural Concrete4/2016637-645Technical Papers

Kurzfassung

The fatigue behaviour of concrete is gaining new relevance against the backdrop of continuous developments in concrete construction. Modern types of concrete are achieving ever higher strengths; hence, concrete structures are becoming increasingly attractive for new fields of application such as onshore and offshore wind turbines. The fatigue of concrete has a special relevance for these cyclically loaded structures and knowledge of the number of cycles to failure is no longer sufficient for their design. There are further questions concerning strain and stiffness development and the combination of fatigue loading and maritime environmental conditions which have been investigated with new testing methods at Leibniz Universität Hannover within the scope of the “ProBeton” research project. The first results of this project, which is supported by the Federal Ministry for Economic Affairs and Energy, are presented here.

x
Classen, Martin; Herbrand, Martin; Kueres, Dominik; Hegger, JosefDerivation of design rules for innovative shear connectors in steel-concrete composites through the systematic use of non-linear finite element analysis (FEA)Structural Concrete4/2016646-655Technical Papers

Kurzfassung

Today, the development of innovative shear connectors for steel-concrete composites is accompanied by a large number of experimental investigations, which are obligatory when proposing suitable design formula and carving out their limitations of use. Using the example of the so-called pin connector, the present paper illustrates to what extent validated finite element models of novel shear connectors can be used to replace expensive and time-consuming shear tests and how these finite element models can support the deduction of design concepts. The pin connector considered was developed for connecting steel sections to very slender high-strength concrete slabs in which conventional shear connectors such as headed studs cannot be used due to the limited embedment depth. In order to clarify the shear behaviour and load-carrying mechanisms of these novel connectors, non-linear finite element models were set up using the commercial FE software Abaqus. Subsequently, the FE models were used to perform systematic parametric studies. This paper describes the numerical results and also explains the stepwise development of an entire engineering model for determining the longitudinal shear capacity of small-scale pin connectors, including all the necessary limitations of use. The proposed modelling strategy and the methodology for the deduction of design rules can be transferred and assigned to other types of shear connectors.

x
López-López, Andrés; Tomás, Antonio; Sánchez-Olivares, GregorioBehaviour of reinforced concrete rectangular sections based on tests complying with seismic construction requirementsStructural Concrete4/2016656-667Technical Papers

Kurzfassung

The prediction of the seismic behaviour of reinforced concrete elements using numerical models has become a field of growing interest in recent years due to the importance of the effects induced by seismic loads applied to reinforced concrete structures. The simulation of the hysteretic behaviour of the plastic hinges generated in the structure when the seismic load acts requires the use of models that are able to describe the sectional behaviour of structural members. Thus, the main objective of the present paper is the adjustment of several empirical expressions that reduce the computational time needed to simulate the yield and ultimate behaviour of a given reinforced concrete rectangular section under either monotonic or cyclic loading. The expressions are calibrated with a selection of tests, taken from a published database of more than 1000 tests, according to the criterion that the selected specimens comply with the seismic construction requirements of the main international building codes (EC-2, EC-8 and ACI-318). Owing to their robustness and the acceptable computation time for low-dimensional problems, genetic algorithms are used for this calibration. The equations proposed can be employed by structural engineers for the design and analysis of actual structural elements used in ordinary reinforced concrete buildings located in seismic areas, and provide more accurate results than other expressions.

x
Ma, Chau-Khun; Awang, Abdullah Zawawi; Omar, Wahid; Liang, Maybelle; Jaw, Siow-Wei; Azimi, MohammadaminFlexural capacity enhancement of rectangular high-strength concrete columns confined with post-tensioned steel straps: experimental investigation and analytical modellingStructural Concrete4/2016668-676Technical Papers

Kurzfassung

The load-carrying capacity and deformability of concrete columns can be substantially enhanced by confining with post-tensioned steel straps. As interest in high-strength concrete (HSC) grows among structural engineers and researchers due to its superior performance, this confining technique is being extended to HSC columns with the hope that it can eliminate the undesired properties of HSC, especially its brittleness. However, experimental studies involving confined HSC columns subjected to eccentric loads are comparatively limited. It can be seen from past research that most studies of external confinement were conducted on small-scale normal-strength concrete (NSC) cylinders subjected to concentric loads. Since most columns are subjected to eccentric loads in reality, the scarcity of test data has prevented the potential of this confining technique from being fully exploited. In this paper, this confining technique is called the steel-strapping tensioning technique (SSTT) for brevity. Nine HSC columns were tested under eccentric loads. The specimens were grouped into three groups with each group having an unconfined HSC column as a control specimen, a two-layer SSTT-confined HSC column and a four-layer confined HSC column. The experimental results show that the flexural capacities of HSC columns can be enhanced with SSTT. The deformability of confined HSC columns is significantly improved with such confinement.

x
Gupta, Pramod K.; Khaudhair, Ziyad A.; Ahuja, Ashok K.A new method for proportioning recycled concreteStructural Concrete4/2016677-687Technical Papers

Kurzfassung

A new modified mix proportioning method for producing normal-strength concrete using recycled concrete aggregate, called the equivalent coarse aggregate mass (ECAM) method, is proposed in this paper. The basic concepts of the proposed method with calculations for mix design are presented by designing 14 mixes and testing 99 concrete samples (57 cubes and 42 cylinders). Experimental work was carried out in two phases. In the first phase, an experimental programme was conducted to verify the proposed mix design method by studying a single parameter - uniaxial compressive strength. Five different mixes with initial 0, 25, 50, 75 and 100 % replacement by mass were designed, cast and tested in this phase. It was concluded from the first phase that the proposed method can be adopted for designing the recycled concrete up to a nominal replacement ratio of 50 %. Accordingly, the second phase of experimental study was carried out to design three different grades of concrete strength using the proposed method to investigate the mechanical properties of the recycled concrete. Seven different mechanical properties - compressive strength, splitting tensile strength, modulus of elasticity, Schmidt hammer test, ultrasonic pulse velocity test, fresh density and hardened density - were investigated and are presented and discussed here.

x
fib-news: Structural Concrete 4/2016Structural Concrete4/2016688-695fib-news

Kurzfassung

11th fib PhD International Symposium in Tokyo
CONSEC 2016
fib Bulletin 79
New COM7
Brazil NMG hosts fib event
Short notes
Obituaries
Congresses and symposia

x
Contents: Structural Concrete 3/2016Structural Concrete3/2016Contents

Kurzfassung

Keine Kurzfassung verfügbar.

x