Eine Erweiterung der technischen Biegelehre für die Berechnung biegesteifer prismatischer Faltwerke

Von R. Schardt, Darmstadt

1. Einleitung

1.1. Allgemeines

Die in den Tragwerken auftretenden Spannungen, die sich bei der Verformung von Faltwerken ergeben, können nur mit einer genauen Kenntnis der Spannungsverteilung in den einzelnen Bauteilen ermittelt werden. Die Kenntnis der Spannungsverteilung ist von größter Bedeutung für die Berechnung der Tragwerke, da sie die Grundlage für die Entwurfsarbeiten bildet.

Die Biegelehre ist eine wichtige Berechnungsmethode für die erforderlichen Gleichungen. Sie wird in der Technik von verschiedenen Autoren und Institutionen angewendet.

1.2. Die Biegelehre

Die Biegelehre ist eine Theorie, welche die Verformung von Biegeträgern beschreibt. Sie basiert auf der Annahme, dass die Träger aus einem homogenen, isotropen Material bestehen und dass die Beanspruchung durch eine einachsige Belastung gegeben ist.

1.3. Die Faltwerke

1.4. Die Ergebnisse

DK 624.074.5: 624.072.1: 624.04

1) Von der Fakultät für Bauringeneurwesen der Technischen Hochschule Darmstadt ausgesetzter Habilitationslehrstuhl. Referent: Prof. Dr.-Ing. Dr.-Ing. E. h. K. Klöppel. Korreferent: Prof. Dr. rer. techn. Dr. rer. nat. h. c. A. Wallacher.
abhängig voneinander behandeln lassen. Auch für die Berechnung
der Flachwerke nach Theorie II. Ordnung bietet das Verfahren große
Vorteile.

Bild 1. Querschnitt des Flachwerks mit Bezeichnungen

12. Bezeichnungen
Die folgenden Bezeichnungen werden verwendet (Bild 1):

\(q_i \) : Belastungsmoment in der Ebene der Scheibe \(i \)
\(q_i \) : Abkürzung
\(\alpha_i \) : Winkel der Scheibe \(i \) in der Querschnittsscheibe
gegenüber der x-Achse entgegen dem Uhrzeigersinn positiv (Bild 1)
\(R_{x,i} \) : Ritzwiderstand für Verformungsabstand \(h \)
\(\beta_{x,i} \) : Elastizitätswerte für die Verformung
\(R_{y,i} \) : Wölbwiderstand für Verformungsabstand \(k \)
\(D \) : Dicke der Scheibe \(i \)
\(\sigma_i \) : Verschiebungskomponenten des Schwerpunkts der
die Querschnittsscheibe im Einheitsverformungsabstand \(h = 1 \) [cm]
\(\sigma_{x,i} \) : Verschiebungskomponenten des Knotens \(i \) in der
Querschnittsscheibe
\(F \) : Flächenausdehnung des Flachwerks
\(\varphi_i \) : Einheitsverformung, Verschiebung des Knotens \(i \)
aus der Querschnittsscheibe für \(h = 1 \) [cm]
\(h_i \) : Höhe der Scheibe \(i \) (Bild 1)
\(\eta \) : Argument in der Lösung der Differentialgleichung (29)
\(i \) : Index, in der Regel für das Zählen der Scheiben und Knoten
\(l \) : Länge des Flachwerks in z-Richtung
\(\dot{h} \) : Wurfeln des charakteristischen Gleitmomentes
\(m_i \) : Querbiegemoment an Knoten \(i \)
\(\delta_{x,i} \) : Beiwerte für die Schnittgrößen bei Theorie
II. Ordnung

\(M_{x}, M_{y} \) [Mpa-cm] = Haupthagmomente, identisch mit \(1W \) und \(1W \)
\(\mathbf{N} \) = Normalkraft, identisch mit \(1W \)
\(q_i \) = Belastungskraft, in der Ebene der Scheibe \(i \)
\(S_i \) = Scheibenkraft in der Ebene der Scheibe \(i \)
\(k \) = Elemente des Vektor \(k \)
\(\mathbf{T} \) = Vektor der Scheibenkräfte in der Ebene der Scheibe \(i \)
\(\mathbf{G} \) = Matrix, Beziehungen zwischen den Scheibenkräften
\(\mathbf{A} \) = Matrix, Beziehungen zwischen den Scheibenkräften
\(\mathbf{C} \) = Elemente der Matrix \(C \)
\(\mathbf{D} \) = Längsspannung an Knoten \(i \)
\(\mathbf{E} \) = Elemente des Vektors \(E \)
\(\mathbf{F} \) = Vektor der Scheibenkräfte aus Querbiegung mit \(n \)
\(\mathbf{T} \) = Scheibenkraft in der Ebene \(i \) aus Querbiegung
\(\mathbf{G} \) = Vektor der Scheibenkräfte aus Querbiegung mit \(n \)

\[\mathbf{W} = \begin{pmatrix} k & W \end{pmatrix} \]

\(\mathbf{W} \) : Wölbwiderstand aus dem Wölbverhältnis \(h \)
\(\mathbf{Q} \) : Vektor der Verformungen
\(\mathbf{Q} \) : Vektor der Verformungen
\(\mathbf{K} \) : Wölbwiderstand des Knotens \(i \)
\(\mathbf{L} \) : Verformung aus der Querschnittsscheibe
\(\mathbf{M} \) : Normalmoment, Wölbwiderstand aus dem Wölb-
\(\mathbf{N} \) : Wölbwiderstand der Scheiben

1.3. Voraussetzungen
1. Das Tragwerk sei in z-Richtung (Erzeugende) praxismäßig.
2. Der Querschnitt (x, y-Ebene) sei einfach zusammenhängend (offen), unverzweigt und bestehe aus \(n \) geraden Abschnitten (Scheiben) mit jeweils konstanter Dicke, von denen jeweils zwei aufeinanderfolgende verschiedene Richtungen haben sollen.
3. Die Dicke \(d \) der Abschnitte sei klein gegen die Querschnittsabmessungen \(h \).
4. Das Halbeisseche Gesetz gelte unbegrenzt.
5. Die Längsspannungen \(\sigma_i \) seien über die Dicke \(d \) der Scheiben konstant, über die Höhe \(h \) linear verteilt.
6. Die Verformungen seien klein gegen die Querschnittsabmessungen \(h \).
7. In den Mittelachsen der Scheiben gibt es keine Schnabbrückungen und nur Spannungen in Längsrichtung \(z \).
8. Die Drillmomenten der einzelnen Scheiben werden im Gesamtgleichgewicht berücksichtigt, ihr Einfluß auf die Form der Einzelheiten verformung wird vernachlässigt. Deshalb spielen sie in den Ableitungen des Abschnitts 2 keine Rolle.

1.4. Ableitung der Querschnittswerte
2.1. Die geometrischen Beziehungen zwischen den Verschiebungen in der Querschnittsebene (x, y) und den Wölbwerten \(w \).

Wegen der vernachlässigten Schnabbrückungen in der Mittel-
ebene der Scheiben (Voraussetzung 2) erhält man für die Scheibe \(i \) gemäß Bild 2 aus den Verschiebungen \(w_i \) und \(w_{i+1} \) in z-Richtung die Verschiebungskomponente in der Scheibenachse

\[f_{L,i} = \frac{d w_i}{d z} \]
Die Formel (1) gilt für alle Scheiben $1 \leq i \leq n$.

Auf die Verschiebungen der Punkte i und $i-1$ rechtwinklig zur Scheibenlinie haben auch die Verwölbungen der Nachbarscheiben einen Einfluß (Bild 5).

Die Projektionen der Verschiebungen δ_i des Knotens i in Richtung der Scheiben i und $i+1$ sind

$$
\mathbf{d} \tilde{f}_{i,i+1} = -\frac{d f_{i,i+1}}{d x} \sin \delta_i + \left(\frac{d f_{i,i+1}}{d x} \cos \delta_i \right) \cdot \delta_i
$$

und

$$
\mathbf{d} \tilde{f}_{i+1,i} = -\frac{d f_{i+1,i}}{d x} \sin \delta_i + \left(\frac{d f_{i+1,i}}{d x} \cos \delta_i \right) \cdot \delta_i
$$

Wenn man Gl. (1) einsetzt, kann man auch diese Verschiebungen durch die Wölbordinaten w_i ausdrücken

$$
\frac{d f_{i,i+1}}{d x} = \frac{w_i - w_{i-1}}{h_i \cdot \tan \delta_i} - \left(\frac{1}{h_i \cdot \tan \delta_i} + \frac{1}{h_{i+1} \cdot \tan \delta_i} \right) \cdot \delta_i
$$

Mit den Abkürzungen

\begin{align*}
\alpha_{i,1} &= -\frac{1}{h_i \cdot \tan \delta_i} + \frac{1}{h_{i+1} \cdot \tan \delta_i} \\
\alpha_{i,2} &= -\frac{1}{h_i \cdot \tan \delta_i} + \frac{1}{h_{i+1} \cdot \tan \delta_i} \\
\alpha_{i,3} &= \frac{1}{h_{i+1} \cdot \tan \delta_i}
\end{align*}

wird

$$
\frac{d f_{i,i+1}}{d x} = \alpha_{i,1} \cdot w_i + \alpha_{i,2} \cdot w_{i-1} + \alpha_{i,3} \cdot w_{i+1} - \delta_i
$$

Auf die gleiche Weise erhält man mit den Abkürzungen

\begin{align*}
\beta_{i+1,1} &= \frac{1}{h_i \cdot \sin \delta_i} \\
\beta_{i+1,2} &= \frac{1}{h_i \cdot \sin \delta_i} \\
\beta_{i+1,3} &= \frac{1}{h_{i+1} \cdot \tan \delta_i}
\end{align*}

die Änderung der Verschiebung rechtwinklig zur Scheibe i zu

$$
\frac{d f_{i+1,i}}{d x} = \beta_{i+1,1} \cdot w_i + \beta_{i+1,2} \cdot w_{i-1} + \beta_{i+1,3} \cdot w_{i+1} + \delta_i
$$

(5)

Die Formeln (3) und (5) gelten für $1 \leq i \leq n-1$.

2.2 Die Beziehungen zwischen den Querbiegemomenten m und den Wölbordinaten w

Wenn die Wölbwinkel ϑ_i nicht für alle Scheiben gleich sind, entstehen Querbiegemomente, die von Knoten (Kanten) zu Knoten linear verlaufen. Sie sind von den Differenzen der Stabwölbwinkel ($\vartheta_{i+1} - \vartheta_i$) abhängig.

Zur Ermittlung dieser Querbiegemomente wird der Querschnitt als ein starrer Rahmen mit den „Stab“-Längen h_i und den „Stab“-Querschnitten d_i betrachtet. Dieser Rahmen kann für die unmittelbare ableitende Abwicklung (gestreckt) betrachtet werden (Bild 7). Der Stabung ist ($n-3$)-fach stetig und unbestimmt. Als Überschläge werden die Stützpunkte an den Knoten 2 bis $n-2$ eingeführt. Es ergibt sich ein dreigliedriges Gleichungssystem mit

$$
\delta_{k,i-1} = \frac{1}{2} \left(\delta_{k+1,i} - \delta_{k,i-1} \right) = \frac{h_i}{6 E_i} \delta_i \quad \text{und} \quad \delta_i = \frac{1}{3} \left(h_i \cdot E_i + h_{i+1} \cdot E_{i+1} \right)
$$

(6)
Die Elemente $β_{jk}$ der Kehrmatrix dieses Gleichungssystems werden im folgenden benutzt, wobei i und k von 2 bis $n-2$ laufen.

Aus dem Verformungszustand $θ_i$ (Bild 7 d) erhält man als Belastungsglieder $δ_{1,0} = θ_i$ und $δ_{i,0} = 0$. Sind auch die anderen Stabdrehwinkel von Null verschieden, so ergibt sich allgemein

$$δ_{i,0} = θ_i + \sum δ_{i,k} - θ_i.$$

(10)

Formel (10) gilt für $2 ≤ i ≤ n - 2$.

Mit den $β_{jk}$-Werten und den Belastungsgleidern $δ_{i,0}$ lassen sich die Stützmomente ausdrücken:

$$m_i = - \sum β_{ik} · δ_{k,0}.$$

(11)

(11) in (10) eingesetzt führt auf

$$m_i = -β_{i,2} · δ_{2,0} + β_{i,3} · δ_{3,0} + \cdots + β_{i,n-2} · δ_{n-2,0} + β_{i,1} · θ_i + \sum β_{i,k} · δ_{k,0} - β_{i,n-1} · δ_{n-1,0} - \sum β_{i,k} · δ_{k,0}.$$

Um $θ_i$ zu eliminieren, muß nach z differenziert und die Formel (8) eingesetzt werden:

$$m_i = \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,1} · w_{1} + \sum β_{i,k} · δ_{k,2} · w_{2} + \sum β_{i,k} · δ_{k,3} · w_{3} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,2} · w_{2} + \sum β_{i,k} · δ_{k,3} · w_{3} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,3} · w_{3} + \sum β_{i,k} · δ_{k,4} · w_{4} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,4} · w_{4} + \sum β_{i,k} · δ_{k,5} · w_{5} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,5} · w_{5} + \sum β_{i,k} · δ_{k,6} · w_{6} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,6} · w_{6} + \sum β_{i,k} · δ_{k,7} · w_{7} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,7} · w_{7} + \sum β_{i,k} · δ_{k,8} · w_{8} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,8} · w_{8} + \sum β_{i,k} · δ_{k,9} · w_{9} + \cdots + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,9} · w_{9} + \sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,n} · w_{n} \right] + \frac{1}{h_z} \left[\sum β_{i,k} · δ_{k,n} · w_{n} \right].$$

Für die $n - 3$-Momente m_i ergibt sich somit ein Gleichungssystem mit $n - 3$ Zeilen und $n + 3$ Spalten. Die Elemente der Matrix werden $β_{jk}$ genannt. Sie sind durch die Gleichung (12) festgelegt:

$$\begin{array}{cccccc}
w_0 & w_1 & \cdots & w_k & \cdots & w_n \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
m_{i-2} & \vdots & \vdots & \vdots & \vdots & \vdots \\
m_i & \vdots & \vdots & \vdots & \vdots & \vdots \\
m_{n-2} & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}$$

(12a)

Aus den Stützmomenten erhält man Querkräfte $q_i = \left(\frac{m_i - m_{i-1}}{h_i} \right)$.

Sie stellen für den Querschnitt Kantenlasten dar. Um die daraus entstehenden Scheibenkräfte T zu bestimmen (Bild 8), muß man den gestreckten Durchlaufträger nun verlassen und sich wieder dem wirklichen Querschnitt zuwenden. Die Änderung der Scheibenkräfte in z-Richtung ist der Scheibenhärtung gleich. Zur Ermittlung der Scheibenkräfte hat man die Stützmomente m_i durch die zugehörigen Querkräfte q_i ersetzt.

Aus den beiden Kraftstrecken in Bild 9 erhält man:

$$T'_i = -\frac{q_{i-1}}{\sin \alpha_{i-1}} - \frac{q_i}{\tan \alpha_{i-1}} + \frac{q_{i+1}}{\sin \alpha_i}.$$

Hierin kann man wieder q durch m ersetzen:

$$T'_i = \frac{m_{i-1}}{h_{i-1} · \tan \alpha_{i-1}} - \frac{m_i}{h_i · \tan \alpha_i} + \frac{m_{i+1}}{h_{i+1} · \sin \alpha_i}.$$

Mit den Abkürzungen (2) und (4) schreibt sich T'_i:

$$T'_i = -b_{1,i-1} · m_{i-1} - b_{2,i-1} · w_{i-1} - b_{3,i-1} · a_{i-1} · m_{i-1} + \cdots + a_{1,i} · m_i + a_{2,i} · m_{i-1} + \cdots + (13)$$

Die Formel (13) gilt für $2 ≤ i ≤ n - 1$.

Um endgültig die Beziehung zwischen den Schubkräften T_i und den Wölbwerten w_i herzustellen, muß man noch die $μ_i$-Werte einführen und nach z differenzieren:

$$T'_i = -b_{1,i-1} · \sum \sum μ_{i,k} · w_k - b_{2,i-1} · a_{i-1} · w_i + \cdots + a_{1,i} · \sum μ_{i,k} · w_i.$$

(14)

Die Formel (14) gilt für $1 ≤ i ≤ n$.

Bei den Werten T'_1, T'_2, T'_3, T'_n ist zu beachten, daß einige $μ_{i,k}$-Werte aus dem Indexbereich der Matrix (12a) herausfallen. Diese sind Null zu setzen. Damit erspart man sich besondere Randformeln.

2.3. Die Beziehungen zwischen den Schubkräften T_i aus der Veränderlichkeit der Längsspannungen $σ_z$ und den Wölfbördnern w_i

Nach Voraussetzung 7 kann man für die Mittelebenen der Schieben das Elastizitätsgeset für den einachsigen Spannungszustand anwenden. Daraus folgt, daß die Längsspannung $σ_z$ gleich der
E-fachen Dehnung ε_z, das heißt der Änderung der Verwölbung in z-Richtung, ist:

$$\sigma_i = E \cdot \varepsilon_i = E \cdot \frac{dw}{dz} = E \cdot w' \quad \ldots \quad (15)$$

Das Gleichgewicht in z-Richtung verlangt (Bild 10):

$$dS_i - \int_i dS \partial d_1 \partial d_1 h = 0.$$

Daraus erhält man die differentielle Kantenschubkraft:

$$dS_i - \int_i dS \partial d_1 \partial d_1 h. \quad \ldots \quad (2)$$

Der Schubfluß längs der Kante i ist:

$$S_i = \frac{dS_i}{dz} = \int_i dS \partial d_1 \partial d_1 h. \quad \ldots \quad (16)$$

Aus dem Momentenungleichgewicht um Punkt i (Bild 10) erhält man:

$$- (S_i + \frac{dS_i}{dz} \partial d_1 \partial d_1 h - d_1 \partial d_1 h^2 \partial d_1 \partial d_1 h - (d_1 \partial d_1 h)^2) + \frac{d_1 \partial d_1 h}{6} = 0.$$

Unter Vernachlässigung der Glieder dS_i und $\frac{1}{2} d_1 \partial d_1 h$, die von höherer Ordnung klein sind, wird

$$\frac{dS_i}{dz} = \frac{d_1 \partial d_1 h}{3} - \frac{d_1 \partial d_1 h}{6}.$$

Um eine Rekursionsformel herzustellen, wird S_i mit S_{i-1} verglichen:

$$S_i = S_{i-1} - (d_1 \partial d_1 h)^2 - \frac{d_1 \partial d_1 h}{3} - \frac{d_1 \partial d_1 h}{6}.$$

Man erhält daraus:

$$S_i = \frac{S_{i-1}}{d_1 \partial d_1 h} \frac{d_1 \partial d_1 h}{3} + \frac{d_1 \partial d_1 h}{6} - \frac{d_1 \partial d_1 h}{6} - \frac{d_1 \partial d_1 h}{6}.$$

Num wird noch o durch w mit (15) ersetzt und einmal nach z differenziert, so erhält man die zweite Hauptformel

$$\frac{1}{E} S_i' = \frac{1}{E} S_{i-1} - \int_i dS \partial d_1 \partial d_1 h.$$

Sie zeigt den Zusammenhang zwischen den Wölbwerten w_i und den Schubkräften, die aus der Änderung der σ_z-Spannungen entstehen.

2.4 Die Entwicklung der Wölbfläche in Eigenfunktionen

Die Koeffizienten in den beiden Hauptformeln (14) und (18) werden τ_{ik} und σ_{ik} genannt, wobei angenommen wird, daß durch die Art der Indizes eine Verwölbung mit den Spannungen vermittels wird, die Zuordnung zu T und S aber angenähert ist. Man kann dann schreiben:

$$T_i' = \sum_{k=1}^{n} \tau_{ik} w_k \quad \text{und} \quad \frac{1}{E} S_i' = \sum_{k=1}^{n} \sigma_{ik} w_k.$$

Da n Schubkräfte, aber $n+1$ Wölbwerten vorhanden sind, wird noch die Bedingung benutzt, daß der Schubfluß am Querschnittsende (Punkt o) verschwinden muß. Man erhält aus der Integration des Schubflußes über den ganzen Querschnitt zu

$$\frac{1}{E} S_i' + \left(\frac{d_1 \partial d_1 h}{6} - \frac{d_1 \partial d_1 h}{3} \right) = 0 \quad \ldots \quad (18a)$$

Man kann dadurch den vollständigen Vektor für die Verwölbung in der weiteren Rechnung beibehalten.

$$w = \begin{pmatrix} w_0 \\ \vdots \\ w_n \end{pmatrix}$$

Schreibt man für das gesamte Schema der Koeffizienten σ_{ik} und τ_{ik} die Matrixbezeichnungen \mathbf{C} und \mathbf{S} für die Schubkräfte im gesamten Querschnitt die Vektorbezeichnungen \mathbf{f} und \mathbf{g}, so hat man die beiden Hauptformeln in der folgenden kurzen Form:

$$\begin{pmatrix} 1 \\ E \end{pmatrix} \cdot \mathbf{f} = \mathbf{C} \cdot \mathbf{w} \quad \ldots \quad (19)$$

$$\mathbf{t} = \mathbf{S} \cdot \mathbf{w}.$$

Die Gleichungen (6), (7) und (8) zeigen, daß die Wölbkoordinaten w_i (Komponenten des Vektors \mathbf{w}) von der 1. Ableitung der Verformungen \mathbf{b} in der Querschnittsebene nach z abhängen. Diese Verformungen lassen sich mit $n+1$ Grundvektoren \mathbf{b}_i durch lineare Kombination darstellen. Die Komponenten des Vektors \mathbf{b}_i sind die in Bild 4 angegebenen Verformungsgrößen f_i, i, h und i.

$$\mathbf{v} = \sum_{i=0}^{n} \mathbf{b}_i \mathbf{v}_i.$$

Gemäß den Gleichungen (6), (7) und (8) wird \mathbf{v} durch die 1. Ableitung der Verformungsgrößen gegeben.

$$\mathbf{w} = \sum_{i=0}^{n} \mathbf{b}_i \mathbf{v}_i.$$

\mathbf{w} ist die Einheitsverwölbungen mit den Ordinaten \mathbf{v}_i (\mathbf{b}), die sich aus der Einheitsverwölbung $\mathbf{v} = 1$ ergeben. Die Ordinaten an den Knoten i des Querschnittes sind die Komponenten \mathbf{b}_i des Vektors \mathbf{b}_i. V stellt den Wert der Verformungsergebnisse dar. Für die Zählung der Grundzustände erhalten die Vektoren und ihre Komponenten sowie die zugehörigen Konstanten einen links oben stehenden Index k.

Man führt diese Bezeichnungen nun in (19) ein und erhält

$$\mathbf{f} = \mathbf{C} \cdot \sum_{i=0}^{n} \mathbf{b}_i \mathbf{v}_i.$$

$$\mathbf{w} = \sum_{i=0}^{n} \mathbf{b}_i \mathbf{v}_i.$$

\mathbf{C} ist ein den einzelnen Wölbvektoren \mathbf{w}_i zugeordneter Querschnittsbeiwert, der hier schon eingeführt wird, um die Analogie zur Technischen Biegelinie zu vervollständigen und für den sich, wenn man die innere Arbeit der σ_z-Spannungen durch die Verformungsergebnisse \mathbf{V} ausdrückt, die Festlegung

$$\mathbf{C} \cdot \mathbf{f} = \int \mathbf{v} \mathbf{b} \mathbf{w}.$$

ergibt.

Es kommt nun der entscheidende Schritt, indem man verlangt, daß die Grundvektoren \mathbf{k}_1 und \mathbf{k}_1 affin sein sollen. Das heißt

$$\mathbf{k}_1 = \mathbf{k}_2 \mathbf{k}_1.$$

Diese Forderung bedeutet keine Einschränkung im Sinne der Allgemeingültigkeit der Lösung, sondern eine bestimmte Art der Zerlegung in Grundlösungen.

Setzen wir die Ausdrücke (20) ein

$$\mathbf{C} \cdot \mathbf{k}_1 = \mathbf{C} \cdot \mathbf{k}_2 \mathbf{k}_1,$$

so erhalten wir das Matriseigenwertproblem

$$(\mathbf{I} - \mathbf{b} \mathbf{C} \mathbf{b} \cdot \mathbf{C}) \mathbf{w}_0 = 0 \quad \ldots \quad (22)$$
Eine Erweiterung der technischen Biegelehre

mit

\(\bar{\mathbf{B}} = \mathbf{C} \cdot \mathbf{B} \).

Das Eigenwertproblem ergibt \(n + 1 \) Eigenwerte \(\bar{\mathbf{B}} \). Davon sind numerisch nur \(n - 3 \) zu erhalten. Die ersten vier sind Null. Das sind die Bewegungsmöglichkeiten des Querschnitts, bei denen keine oder nur gleiche \(\theta \)-Verdrehungen der einzelnen Scheiben auftreten, das heißt, bei denen der Querschnitt in seiner Ebene eine Starrkörperbewegung macht, also die Querschnittsform erhalten bleibt. Es entsprechen sich hier gerade die Verformungsanteile der numerischen Erfassung, die man bei der technischen Biegelehre und der Wölbkrafttorsion ausschließlich betrachtet, in diesem Fall trivial.

Für die Ermittlung der anderen Eigenwerte \(\bar{\mathbf{B}} \) für \(k = 4 \) bis \(k \rightarrow \infty \) gibt es mathematische Verfahren, die hier nicht näher erläutert werden müssen. Die Eigenvektoren erhält man bis auf einen unbestimmten Faktor. Dieser Faktor ist frei wählbar und hat keine mechanische Bedeutung. Man kann ihn z. B. so bestimmen, daß die größte Komponente des Eigenvektors gleich 1 wird oder daß der Wölbwiderstand \(\mathbf{C} \) gleich 1 wird.

Die Eigenfunktionen lassen sich auch aus einem Schwungungsproblem gewinnen. Dabei wird ein Stabelement der Länge \(dx \) so festgelegt, daß alle Punkte des Querschnitts \(z \) sich nur in \(z \)-Richtung, die des Querschnitts \(z - dz \) auch in der Querschnittsebene \(x, y \) bewegen können. Trägheitskräfte wirken nur in \(z \)-Richtung. Die Massenbelegung entspricht der Scheibenfeder. Für die elastischen Verformungen gelten die am Anfang der Arbeit vereinbarten Voraussetzungen.

3. Die Belastungswerte

3.1. Die Gleichgewichtsbedingung

Die äußere Belastung des Faltwerks kann man bekannterweise zu Kantenlasten zusammenfassen und diese dann wieder in die Scheibenlasten zerlegen. In dieser zuletzt genannten Form soll weiterhin die äußere Last behandelt werden. Sie wird durch den Vektor

\[
\mathbf{q} = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix}
\]

dargestellt. Die Komponenten \(q_i \) sind die Scheibenlasten.

Um die Affinität, die man durch Entwickeln der Verwölbung in Eigenfunktionen für die inneren Schubkräfte erreichen konnte, auch auf die äußere Belastung auszudehnen, stellt man diese ebenfalls durch eine Linearkombination der Einheitsvektoren \(\mathbf{h}_i \) dar.

\[
\mathbf{q} = \sum_{i=1}^{n} \lambda_i \mathbf{h}_i
\]

Für die Gesamtlast der Schubkräfte gilt dann die Gleichgewichtsbedingung

\[
\mathbf{q} - \mathbf{q}^L = \mathbf{0}
\]

oder

\[
\sum_{i=1}^{n} E \cdot \mathbf{C} \cdot \mathbf{K} \mathbf{B}^L \cdot \mathbf{h}_i + \sum_{i=1}^{n} \mathbf{K} \mathbf{B} \cdot \mathbf{h}_i = \sum_{i=1}^{n} \mathbf{K} \mathbf{B} \cdot \mathbf{h}_i
\]

Man hat damit jedes Glied der Gleichgewichtsbedingung zerlegt in einen Anteil, der nur von \(z \) und einen anderen, der nur von der Querschnittsfläche \(h \) abhängt.

Dieser Letztgenannte ist in allen drei Gliedern gleich und kann daher herausgekürzt werden. Dann bleibt eine gewöhnliche Differenzialgleichung 4. Ordnung für die Resultante \(\mathbf{B} \mathbf{V} \mathbf{z} \) jeder Einheitsverformung mit den zugehörigen Querschnittswerten.

\[
E \cdot \mathbf{C} \cdot \mathbf{K} \mathbf{B} \cdot \mathbf{V}^L \mathbf{z} - \mathbf{q} \mathbf{z} = \mathbf{0}
\]

Sie hat dieselbe Form wie die Differenzialgleichung des Balkens auf kontinuierlicher elastischer Bettung. Die „Schnittgröße“ wird \(\mathbf{B} \mathbf{W} \) genannt. Sie wird als Wölbmoment mit der Definition

\[
\mathbf{B} \mathbf{W} = E \cdot \mathbf{C} \cdot \mathbf{K} \mathbf{V} \mathbf{z}
\]

bezeichnet und stellt eine Resultante der Längspannungen \(\mathbf{K} \mathbf{B} \mathbf{q} \) dar. Wie bei den bekannten Schubkräften aus Längsspannungen sind auch hier die Spannungen \(\mathbf{K} \mathbf{B} \mathbf{q} \) die Einheitsverwölbungen \(\mathbf{B} \mathbf{V} \) aus dem zugehörigen Verformungszustand \(\mathbf{B} \mathbf{V} \) proportional. Der Verhältniswert ist der in Formel (21) angegebene Wölbwiderstand \(\mathbf{C} \).

Die \(\mathbf{C} \)-fachen Spannungen gleichen den mit der Schnittgröße \(\mathbf{B} \mathbf{W} \) multiplizierten Einheitsverwölbungen

\[
\mathbf{B} \mathbf{q} = \mathbf{B} \mathbf{W} \cdot \mathbf{K} \mathbf{B} \mathbf{q}
\]

oder in der uns aus der technischen Biegelehre und der Wölbkrafttorsion geläufigen Form

\[
\mathbf{B} \mathbf{q} = \frac{\mathbf{B} \mathbf{W} \cdot \mathbf{K} \mathbf{B} \mathbf{q}}{\mathbf{K} \mathbf{B}}
\]

(26)

3.2. Die Zerlegung der äußeren Last

Für die Zerlegung der äußeren Last gemäß Vorschrift (23) hat man zwei Möglichkeiten.

1. Man stellt für jede Scheibe eine Superpositionsgleichung auf und erhält damit ein Gleichungssystem mit den Überzähligkeiten \(\mathbf{K} \mathbf{B} \mathbf{q} \):

\[
\begin{pmatrix}
q_1 - q_2 + q_3 - q_4 + \cdots + q_n - q_1 \\
q_2 - q_3 + q_4 - q_2 + \cdots + q_n - q_2 \\
\vdots \\
q_n - q_1 + q_2 - q_3 + \cdots + q_n - q_n
\end{pmatrix}
\]

\(q_i \) sind die Komponenten des Vektors \(\mathbf{q} \). Man kommt hierbei ohne Kenntnis der Verformungen aus, muß dafür aber alle \(q \)-Gleichungen aufstellen und lösen. Dieses Verfahren kann daher nicht bei Aufgaben angewendet werden, bei denen, um Rechenaufwand einzusparen, die Eigenwerte und die zugehörigen Einheitsverwölbungen nicht alle ermittelt worden sind. Das kommt in der Regel da vor, wo stetig gekrümme Schalen durch ein Faltwerk angenähert werden. In diesen Fällen ist es günstig, in viele Scheiben zu unterteilen, um den Spannungsverlauf möglichst genau zu erhalten. Dadurch steigt aber auch die Anzahl der Eigenwerte. Mit steigendem Eigenwert wird aber der Querschnittswiderstand \(\mathbf{C} \) so groß, daß die zugehörigen Schnittgrößen keinen wesentlichen Beitrag mehr zu den Längsspannungen liefern. Hier empfiehlt sich die nächste Methode.

2. Man kann die Auflage der äußeren Last auch entsprechend der Arbeit vornehmen, die sie an den Einheitsverwölbungen leistet.

Da die äußere Last in die Scheibenlasten \(q_i \) zerlegt wurde, kommen als Wege nur die Verschiebungen \(f_i \) der Scheiben in ihrer Ebene und der Querschnittsebene in Frage.

Die gesamte Arbeit der äußeren Last beträgt

\[
A_e = \sum_{i=1}^{n} q_i \cdot f_i = \sum_{i=1}^{n} q_i \cdot f_i \cdot 1 = \sum_{i=1}^{n} q_i \cdot f_i
\]

Die \(k \)-Glieder der Doppelsumme stellen die gesuchten Komponenten \(q_i \) der äußeren Last dar.

Man hat also die Bestimmungsgleichung

\[
\mathbf{q} = \mathbf{K} \mathbf{B} \mathbf{f} \mathbf{l} - \mathbf{B} \cdot \mathbf{q}
\]

(27)

Mit dieser Formel (27) hat man die Möglichkeit, die Belastungsanteile zu den einzelnen Schnittgrößen unabhängig voneinander zu berechnen, so daß man nur die für ausreichende Genauigkeit notwendigen mitnehmen muß.

Die \(q_i \) sind positiv einzusetzen, wenn sie wie die Reaktionen in Bild 3 wirken. Aus dem Vergleich der Gleichungssysteme (27) und (27 a) sieht man, daß die Matrix \(\mathbf{K} \) die Kernmatrix der Koeffizientenmatrix von (27) ist.
4. Berücksichtigung der Drillsteifigkeit

Im Einheitsverformungsmaßstab \(kV' = 1 \) erhalten die einzelnen Scheiben im allgemeinen unterschiedliche Verformungen \(kV', k\theta_i \). Dazu gehört in jeder Scheibe ein Drillmoment

\[kM_t = G \cdot J_t \cdot k\theta_i \cdot kV'. \]

Auch in den Fällen, in denen die Gesamtheit der Drillmomente keine äußere Resultierende hat, stellen sie doch einen Widerstand für die Einheitsverwölbung dar. Er ergibt sich aus der Formänderungsarbeit

\[-kA_i(0) = \frac{1}{2} \int \sum_i G \cdot J_{t,i} \cdot k\theta_i \cdot kV' \cdot k\theta_i \cdot dz \]

zu

\[kD = \frac{1}{2} \int G \cdot kD \cdot kV'^2 \cdot dz \]

Der Drillwiderstand \(kD \) hat die Dimension \([\text{cm}^4]\), weil die Verformungen \(k\theta_i \) der Scheiben auf \(V \) bezogene Größen sind und daher die Dimension \([\text{cm}]\) hat. Für die Verformung mit unverformbarem Querschnitt (klassische Wölbkrafttorsion) geht (26) über in die bekannte Formel

\[J_D = \frac{1}{2} \sum_i h_i \cdot d_i^3. \]

Da keine im Sinne der St. Venauntsehen Schubspannungen wirkenden äußeren Lasten vorliegen, muß für die Gleichgewichtsbeziehungen die Drillmomente der Scheiben als Kantenlasten, und zwar jeweils ein Kräftepaar rechtwinklig zur Schienenachse wirksam, betrachtet werden. Diese wiederum lassen sich in Scheibenkräften ausdrücken. Die Verteilung dieser Scheibenkräfte hängt nicht nur von den Flächenverformungen \(kV_i \) ab, sondern auch von der Verteilung der Drillwiderstände \(J_{D,i} \) der Scheiben. Man kann daher nicht annehmen, daß die Scheibenkräfte zum Vektor \(k\theta \) affine sind, sie bewirken vielmehr streng genommen eine zusätzliche Verformung des Querschnittes. Auf diese Einbahnrichtung ist in der Voraussetzung 8 hingewiesen. Sie kann aber wegen der ebenfalls vorliegenden Dämpfungswirkung (Voraussetzung 3) hingenommen werden.

In der Gleichgewichtsauflasse (23a) läßt sich die Änderung der "Drillmomenten" in \(z \)-Richtung durch den einfachen Ausdruck

\[G \cdot kD \cdot kV' \]

berücksichtigen, so daß nun die vollständige Differentialgleichung in der Form

\[\frac{d}{dz} \left(E \cdot C \cdot kV'(z) \right) = G \cdot kD \cdot kV'(z) + B \cdot k\theta(z) - k\alpha(z) \]

5. Die Lösung der Differentialgleichung (29)

5.1. Die allgemeine Lösung

Die allgemeine Lösung der Differentialgleichung (29) macht keine Schwierigkeiten. Sie ist vom Beulen, vom Biegelrückknicken und vom elastisch gebetteten Stab her bekannt und für den letzten Fall z.B. in [8] ausführlich dargestellt. Sie wird hier nur soweit angegeben, als sie für die Klarung der Beziehungsweise notwendig ist.

Mit dem Lösungsansatz \(V(z) = e^{\lambda z} \) für die homogene Differentialgleichung erhält man aus der charakteristischen Gleichung

\[\lambda^2 + \frac{G \cdot D}{E \cdot C} \cdot \lambda + \frac{B}{E \cdot C} = 0 \]

die vier Wurzeln

\[\lambda_{1, 2, 3, 4} = \pm \sqrt{\frac{G \cdot D}{2 \cdot E \cdot C} \pm \sqrt{\left(\frac{G \cdot D}{2 \cdot E \cdot C} \right)^2 - \frac{B}{E \cdot C}}}. \]

Mit \(I \) machen wir die Ausdrücke in der Wurzel dimensionlos

\[\lambda_{1, 2, 3, 4} = \pm \frac{1}{2} \sqrt{\xi \pm \xi^2 - \eta^2}, \]

mit den Abkürzungen

\[\xi = \frac{G \cdot D \cdot F^2}{2 \cdot E \cdot C}, \quad \eta = \sqrt{\frac{B}{E \cdot C}}. \]

5.2. Die Randbedingungen

Die Randbedingungen müssen durch die Verformungsresultanten \(kV' \) und ihre Ableitungen nach \(Z \) oder die Schnittgrößen, ausgedrückt werden können. Wenn an den Faltwerkenden starre Endschienen die elastischen Verformungen in der Querschnittsebene verhindern, sind dort die Verformungen \(kV' \) von \(k = 4 \) ab aufwärts gleich Null:

\[kV'(0) = kV'(0) = 0 \] (Starre Endschienen).

Das gilt auch, wenn Gesamtverschiebungen oder Verdrehung (Starrkörperschwingung) möglich sind, das heißt die Bedingung gilt für jede Stelle \(z \), an der ein starres Querschnitt vorhanden ist. Der Ersatzträger \(k \) erhält dort ein festes Lager. Ein Faltwerk mit starren Schlitzen an den Enden und in Feldmitte ist für die Verformungen \(kV' \) von \(k = 4 \) aufwärts ein Durchlaufträger auf drei Stützen.

5.3. Die Verwölbung verhindert, sind die Verformungen \(kV' \) gleich Null:

\[kV'(0) = kV'(0) = 0 \] (Verwölbung verhindert).

Sind dagegen die Verwölbungen an den Enden frei, so kann dort kein Wölbmoment auftreten und demgemäß ist

\[kV'(0) = kV'(0) = 0 \] (Verwölbungen frei).

Auch in den Randbedingungen hat man die Analogie zur Technischen Biegewölbung und Wölbkrafttorsion.

6. Theorie II. Ordnung

Gerade bei der Theorie II. Ordnung kommt einem die eindimensionale Darstellung für die Faltwerksberechnung sehr zugute. In diesem Abschnitt soll daher ein kleiner Ausblick auf die Möglichkeit geben werden.

Für gewöhnlich wird das Gleichgewicht am verformten System aufgestellt. Hier wird die Erfahrung nur die Scheibe \(i \) betrachtet. Bild 11 zeigt die Änderung der Verformung der Scheibe \(i \) in \(z \)-Richtung. Der Querschnitt bei \(z + d \) hat sich gegenüber dem Querschnitt bei \(z \) um \(k\theta_i \cdot d z \) in Richtung der Scheibe, \(k\theta_i \cdot d z \) rechtwinklig dazu verschoben und um \(k\theta_i \cdot d z \) verdreht. Zuerst man die auf dem Querschnitt stehende Normalspannung in eine Komponente in Richtung der verformten Faser und in eine Komponente rechtwinklig zur verformten Scheibenebene, so erhält man für den "Querschnittsträger" eine Belastung, die der Verformung jedes Querschnittspunktes multipliziert mit der auf ihm...
R. Schadt
Eine Erweiterung der technischen Biegelrehre

Bild 12. Hilfswerte \(\omega \) zur Ermittlung des Flämmamomentes in Feldmitte infolge Einzellast in Feldmitte

Bild 13. Hilfswerte \(\omega \) zur Ermittlung der Verformung in Feldmitte infolge Einzellast in Feldmitte

Bild 14. Hilfswerte \(\omega \) zur Ermittlung des Flämmamomentes in Feldmitte infolge Gleichstromlast

Bild 15. Hilfswerte \(\omega \) zur Ermittlung der Verformung in Feldmitte infolge Gleichstromlast
stäbchen der Normalspannung gleich ist. Aus dieser Belastung ergeben sich Scheibenkräfte, die im allgemeinen zum Vektor \(\mathbf{q} \) nicht affin sind, sie enthalten auch Anteile der anderen Scheibenkraft-Vektoren. Diese Anteile erhält man mit einem der in Abbildung 3.2 angegebenen Verfahren.

Für den Fall konstanter Normalspannungen im Querschnitt (Normalkraftbelastung \(N \)) werden diese Anteile \(k_n \) genannt. Sie geben die Belastungsgröße \(k_n \) für den Zustand \(i \), an die die Normalkraft an der Verformung des Zustandes \(k \) erzeugt. In den „trivialen“ Fällen hat man als Beispiel hierfür das Biegedrallknicken: Die Normalkraft erzeugt an der Verformung \(v \) ein Torsionsmoment von der Größe \(y_m \cdot N \cdot v \) und entsprechend erzeugt sie an der Verformung \(B \) eine Querkraft von der Größe \(y_m \cdot N \cdot B \).

Da der Verformungsgraben \(\mathbf{V} \) und \(\mathbf{B} \) der Verformungsgröße \(\mathbf{V} \) entspricht, so erhält man also \(y_m = y_m = y_m \). Durch diese Kopplung ergibt sich wieder eine Abhängigkeit der Differentialgleichungen für die einzelnen Zustände \(k \).

Für Gabellagerung \((\mathbf{V} (0) = k \mathbf{V} (0) = k \mathbf{V} (0)) \) heißt die „Knack“-Bedingung durch einen Sinusansatz gewonnen, die dann auch das Beulverhalten mitherrscht.

7. Beispiele

Zur leichteren Lösung der Differentialgleichung (29) sind in den Bildern 12 bis 15 Hilfsfunktionen für die Beanspruchung auf zwei Stützen und die Lastfälle Einzellig in Feldnähe und Gleichstreckenlast angegeben.

7. Beispiel 1

Für das Einzelwerk mit den im Bild 16 angegebenen Querschnitten werden zunächst die vollständigen Querschnittswerte errechnet. Danach werden für den Lastfall Eigengewicht die Spannungen berechnet. Die Systemwerte sind in Tafel 1 zusammengestellt.

Tafel 1. Systemwerte

<table>
<thead>
<tr>
<th>(k)</th>
<th>(K = 100 , 000) [t/m²] (Beton)</th>
<th>(j = 0) [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>35618</td>
<td>19012</td>
</tr>
<tr>
<td>(2)</td>
<td>73619</td>
<td>19012</td>
</tr>
<tr>
<td>(3)</td>
<td>73619</td>
<td>19012</td>
</tr>
<tr>
<td>(4)</td>
<td>73619</td>
<td>19012</td>
</tr>
<tr>
<td>(5)</td>
<td>73619</td>
<td>19012</td>
</tr>
</tbody>
</table>

Als erstes kann man nun mit den Formeln (14) und (18) die Matrizen \(\mathbf{T} \) und \(\mathbf{G} \) aufstellen (Tafel 2 und 3).

Tafel 2. Matrix \(\mathbf{T} \)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & -45,043 & 89,088 & -102,099 & 85,361 & 30,949 & 10,567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 & 126,620 & -271,710 & 357,750 & -333,370 & 199,850 & 72,859</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 & 144,590 & 352,550 & -488,700 & 408,900 & -332,559 & 114,490</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 & 77,859 & -108,500 & 333,370 & -357,750 & 273,710 & 126,620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & -10,267 & 38,094 & 85,361 & -102,099 & 30,949 & 10,567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tafel 3. Matrix \(\mathbf{G} \)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 0,8033 & -0,4417 & 0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 & 0,60355 & -0,67355 & -0,16060 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 & 0,35259 & -0,73626 & 0,07426 & -0,02540 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 & 0,35355 & -0,83355 & 0,09426 & -0,74426 & -0,16060 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & 0,15690 & -0,29471 & 0,03971 & -0,31971 & -0,29471 & -0,12760</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Durch Multiplikation mit den \(k_{f_1} \)-Werten erhält man die Belastungswerte

\[k_f = 2 \cdot (0,92076 \cdot 1 + 1,2074 \cdot 0,7071) = 3,5491 \]

\[k_f = 2 \cdot (0,92076 \cdot 3,9895 \cdot 1,0742 - 0,92706) = 4,7866 \]

Als Kontrolle muß sich mit diesen \(k_f \) die Resultierende des Gewichts ergeben.

DER STAHLBAU 6/1966 169
R. Scharlitz
Eine Erweiterung der technischen Biegelehre

Bild 16. Querschnitt für das Faltenwerk des Beispiels 1

Bild 17. Verformungen, Schubkräften und Verformungen in den Einheitstastendosen

Bild 18. Schubkräfte und Querbiegemomente bei verschiebblichen Kanten in [Nm] und [Mpm]

Die benötigten Steifigkeitswerte sind
\[
\begin{align*}
\frac{\partial^2 \phi}{\partial x} &= 0 \\
\frac{\partial^2 \psi}{\partial y} &= 0 \quad \text{daraus} \quad \phi_0 = 1 \\
\frac{\partial^2 \phi}{\partial y} &= 10^6 \cdot 0.7663 \cdot 8^2 \\
\frac{\partial^2 \psi}{\partial x} &= 2 \cdot 1 \cdot 10^6 \\
\eta &= 64 \sqrt{ \frac{1383.2}{2} \cdot 1.64 } \quad \text{daraus} \quad \phi_0 = 0.295.
\end{align*}
\]

Für die Biegemomente (2. Wölbmoment) gilt wie bekannt
\[
\psi(W_{12}) = \frac{3.5491 \cdot 8^2}{8} = 28.393 \text{ Mpm}.
\]

Mit dem aus der Kurztablatur (Bild 14) zu entnehmenden Hilfs- wert errechnet sich das 4. Wölbmoment in Feldmitte zu
\[
\psi(W_{12}) = \frac{0.295 \cdot 4.7686 \cdot 8^2}{8} = 11.254 \text{ Mpm}.
\]

Vernachlässigen wir den Drillwiderstand (\(\psi(D) = 0\)), so wird mit
\[
\frac{\partial^2 \phi}{\partial x} = 0 \quad \text{und mit} \quad \phi_0 = 0.99
\]

\[
\psi(W_{12}) = \frac{0.99 \cdot 4.7686 \cdot 8^2}{8} = 37.57 \text{ Mpm}.
\]

Der Unterschied zum Gelenkfall (\(\psi_0 = 1\)) ist dann nur unbedeutend. Er wird erst bei größerer Länge spürbar.

Die Spannungen werden nach der Formel (26) ermittelt und sind in der Tafel 5 und in Bild 19 dargestellt.

Tafel 5. Spannungen zum Beispiel 1 in [Mpm] (siehe Bild 19)

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>(\psi_0)</th>
<th>(\psi(D))</th>
<th>(\phi_0)</th>
<th>(\psi(D-0))</th>
<th>(\phi_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30.942</td>
<td>-28.157</td>
<td>-73.776</td>
<td>7.767</td>
<td>-46.832</td>
</tr>
<tr>
<td>1</td>
<td>32.659</td>
<td>16.196</td>
<td>54.358</td>
<td>28.846</td>
<td>67.905</td>
</tr>
<tr>
<td>2</td>
<td>32.659</td>
<td>5.882</td>
<td>-19.692</td>
<td>-29.584</td>
<td>43.400</td>
</tr>
<tr>
<td>3</td>
<td>32.659</td>
<td>5.882</td>
<td>-19.692</td>
<td>-29.584</td>
<td>43.400</td>
</tr>
<tr>
<td>4</td>
<td>32.659</td>
<td>16.196</td>
<td>54.358</td>
<td>28.846</td>
<td>67.905</td>
</tr>
</tbody>
</table>

Bei diesem Querschnitt, bei dem es nur eine symmetrische und eine antisymmetrische „höhere Schnittgröße“ gibt, kann man die Wölb- ordnungen für \(k = 4\) und \(k = 5\) auch dadurch gewinnen, daß man die Orthogonalitätsbedingung \(\int \phi \cdot \psi \, dF = 0\) benutzt. Wegen der Symmetrie des Querschnitts sind die Wölbflächen durch drei Ordnaten \(\phi_0\), \(\phi_1\), \(\phi_2\) bestimmt. Von den gesuchten Wölbflächen kann man eine Ordinate willkürlich wählen (z.B. \(\phi_0 = 1\)). Dann stehen in der Orthogonalitätsbedingung nur noch die beiden Unbekannten \(\phi_1\) und \(\phi_2\). Für \(k = 4\) genügen die beiden Gleichungen

\[
\int \phi_1 \cdot \psi_0 \cdot dF = 0 \quad \text{und} \quad \int \phi_2 \cdot \psi_1 \cdot dF = 0
\]

zur Festlegung der \(\psi_0\)-Fläche. Die \(\phi_1\)-Flächen sind die Verformungen der Normalakraft und daher alle gleich groß, die \(\phi_1\)-Flächen sind die Wölb- ordnungen bei Neigung des Querschnitts um die x-Achse. Für \(k = 5\) verfährt man ebenso, indem man mit den bekannten antisymmetrischen Wölbflächen \(\phi_1\) (Neigung des Querschnitts um die y-Achse) und \(\phi_2\) (Einheitsverformung infolge \(\psi_0 = 1\)) orthogonalisiert.
7.2. Beispiel 2
schnitt.

Schriftum

Tafel 6. Beispiel 2. Winkelkoordinaten \(h_{q1} \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-6,8264</td>
<td>-3,6995</td>
<td>6,1436</td>
<td>2,0751</td>
<td>-2,1117</td>
<td>0,5932</td>
<td>-0,0384</td>
</tr>
<tr>
<td>1</td>
<td>-4,8264</td>
<td>-3,6995</td>
<td>12,6594</td>
<td>1,0422</td>
<td>0,4106</td>
<td>0,4106</td>
<td>-0,0379</td>
</tr>
<tr>
<td>2</td>
<td>-4,8264</td>
<td>-3,6995</td>
<td>6,9673</td>
<td>0,3208</td>
<td>0,2612</td>
<td>-1,0334</td>
<td>0,0865</td>
</tr>
<tr>
<td>3</td>
<td>-2,0000</td>
<td>3,2190</td>
<td>5,1313</td>
<td>0,0657</td>
<td>0,2913</td>
<td>0,5754</td>
<td>-1,2116</td>
</tr>
<tr>
<td>4</td>
<td>2,0000</td>
<td>3,2190</td>
<td>5,1313</td>
<td>0,0657</td>
<td>-0,2913</td>
<td>0,5754</td>
<td>1,2116</td>
</tr>
<tr>
<td>5</td>
<td>4,8264</td>
<td>-3,6995</td>
<td>6,0617</td>
<td>0,3808</td>
<td>-0,2642</td>
<td>-1,0034</td>
<td>0,0865</td>
</tr>
<tr>
<td>6</td>
<td>4,8264</td>
<td>-3,6995</td>
<td>12,6566</td>
<td>1,0422</td>
<td>-0,4106</td>
<td>0,4106</td>
<td>0,0379</td>
</tr>
<tr>
<td>7</td>
<td>6,8264</td>
<td>-3,6995</td>
<td>6,1436</td>
<td>2,0751</td>
<td>2,1117</td>
<td>0,5932</td>
<td>0,0384</td>
</tr>
</tbody>
</table>

Tafel 7. Beispiel 2. Steifigkeits- und Belastungsverhältnisse, Schnittgrößen

<table>
<thead>
<tr>
<th>(k)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(η)</th>
<th>(k_{H12})</th>
<th>(P_{E1} \cdot k_{L2})</th>
<th>(k_{W})</th>
<th>(k_{W} (1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>23,451</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>50</td>
<td>1500</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>119,06</td>
<td>0,0269</td>
<td>0</td>
<td>0</td>
<td>0,932</td>
<td>-4,8264</td>
<td>241,42</td>
<td>6635,5</td>
</tr>
<tr>
<td>4</td>
<td>15,433</td>
<td>1</td>
<td>0,00125</td>
<td>2,416</td>
<td>25,067</td>
<td>0,202</td>
<td>-0,0036</td>
<td>15,18</td>
<td>414,3</td>
</tr>
<tr>
<td>5</td>
<td>32,666</td>
<td>1</td>
<td>0,00147</td>
<td>2,83</td>
<td>39,2</td>
<td>0,315</td>
<td>0,0611</td>
<td>-18,05</td>
<td>-10,64</td>
</tr>
<tr>
<td>6</td>
<td>256,892</td>
<td>1</td>
<td>0,00238</td>
<td>4,597</td>
<td>111,03</td>
<td>0,132</td>
<td>0,0061</td>
<td>-18,05</td>
<td>-50,58</td>
</tr>
<tr>
<td>7</td>
<td>1778,86</td>
<td>1</td>
<td>0,00675</td>
<td>13,65</td>
<td>291,22</td>
<td>0,002</td>
<td>-0,0036</td>
<td>15,18</td>
<td>379,5</td>
</tr>
</tbody>
</table>

Tafel 8. Beispiel 2. Spannungsanteile und Spannungsverhältnisse

<table>
<thead>
<tr>
<th>(k)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(Σ_{sym})</th>
<th>(Σ_{ant})</th>
<th>(Σ_{2} - 7)</th>
<th>(Σ_{2,3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192,39</td>
<td>298,25</td>
<td>242,61</td>
<td>22,47</td>
<td>35,79</td>
<td>1,19</td>
<td>-14,76</td>
<td>-331,53</td>
<td>-326,28</td>
<td>-97,86</td>
</tr>
<tr>
<td>1</td>
<td>192,39</td>
<td>596,52</td>
<td>17,64</td>
<td>4,46</td>
<td>24,48</td>
<td>11,58</td>
<td>334,51</td>
<td>612,56</td>
<td>947,07</td>
<td>768,93</td>
</tr>
<tr>
<td>2</td>
<td>-20,81</td>
<td>315,59</td>
<td>57,52</td>
<td>2,78</td>
<td>-61,56</td>
<td>-26,83</td>
<td>-119,89</td>
<td>-338,64</td>
<td>-488,53</td>
<td>-338,26</td>
</tr>
<tr>
<td>3</td>
<td>-171,31</td>
<td>241,56</td>
<td>10,14</td>
<td>3,19</td>
<td>34,28</td>
<td>37,52</td>
<td>-127,09</td>
<td>-200,94</td>
<td>-328,03</td>
<td>-413,07</td>
</tr>
<tr>
<td>4</td>
<td>-171,31</td>
<td>241,56</td>
<td>10,14</td>
<td>3,19</td>
<td>34,28</td>
<td>37,52</td>
<td>-127,09</td>
<td>-200,94</td>
<td>73,85</td>
<td>76,05</td>
</tr>
<tr>
<td>5</td>
<td>-20,81</td>
<td>315,59</td>
<td>57,52</td>
<td>2,78</td>
<td>-61,56</td>
<td>-26,83</td>
<td>-119,89</td>
<td>-338,64</td>
<td>218,75</td>
<td>294,58</td>
</tr>
<tr>
<td>6</td>
<td>192,39</td>
<td>596,52</td>
<td>117,64</td>
<td>4,46</td>
<td>34,48</td>
<td>-11,58</td>
<td>334,51</td>
<td>612,56</td>
<td>-270,05</td>
<td>-404,13</td>
</tr>
<tr>
<td>7</td>
<td>192,39</td>
<td>298,25</td>
<td>242,61</td>
<td>22,47</td>
<td>35,79</td>
<td>-1,19</td>
<td>-14,75</td>
<td>331,53</td>
<td>296,72</td>
<td>482,64</td>
</tr>
</tbody>
</table>