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Foreword

At the request of the authors, I have been given the honour of writing the foreword
to this book, which is devoted to railway bridges. It develops the aspects referring to
their structural conception, taking into account the characteristics of railway traffic:
actions, limit states, speeds, etc., and includes a detailed analysis of the superstruc-
ture of the track with its different components and singular elements (for example,
expansion devices) that allow the correct behaviour of the track.

In the following chapters, the knowledge and experience of the authors is passed
on. In this respect, I remember a technical conference that took place in the 1970s
at the Eduardo Torroja Institute, dedicated to bridges; at that time, the undersigned
engineer was assigned to the Renfe Bridge Division and attended it. Ramón
del Cuvillo, professor of Concrete at the School of Civil Engineering in Madrid,
presented a paper in which he focused on the defects and mistakes in design and
execution in projects and works in which he had been involved. His presentation
was the most applauded of the day’s and, personally, the one from which I learned
the most. I hope that reading this book will be useful to avoid the repetition of
problems that can be avoided, without having to wait for experience after the
execution of the works.

As the reader will appreciate, special emphasis is placed on the interactions
between the structure and the track, subjected to railway and environmental
actions, taking into account the requirements of their stability in different situ-
ations; solutions are also proposed and considered in relation to the transitions
between the bridge and the adjacent infrastructure (and track).

Special attention is paid to the dynamic nature of railway actions, studying the
dynamic response of the structure and its influence on the behaviour, also dynamic,
of the track and its components, with the repercussions that this may have on safety,
traffic flow quality, and maintenance needs.

To conclude, I would like to transmit here some ideas that the Emeritus Professor
of Structural Engineering of the University of Berkeley, Edward L. Wilson, sets out in
his book Static and Dynamic Analysis of Structures. In a section of Personal Remarks,
he relates that his first-year physics professor warned his students ‘not to use an
equation they could not prove’; he also advises, with respect to modern structural



xvi Foreword

engineering, ‘not to use a structural analysis program unless you fully understand
the theory and approximations contained in the program’. I fully agree with these
considerations; I therefore share them with the reader, in the hope that they will be
useful to them.

Madrid, June 2023 Jorge Nasarre
Civil Engineer
Caminos de Hierro Foundation
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1.5 The Landscape and the Design of High-Speed Railway Bridges 13

of more or less length on the one hand, and bridges requiring a long main span on
the other hand.

1.4.3.1 Viaducts
There are currently three types of solutions for viaducts with moderate spans and
shorter or shorter lengths.

In Europe, with the exception of Germany, continuous bridges are generally built
with a minimum number of structural expansion joints and corresponding track
expansion joints. The deck is supported by two devices per pier and per abutment.
The bridges on the US lines also generally follow these design criteria.

In China, on the other hand, isostatic solutions are being built with a complete
prefabrication in one piece of the deck of each span and therefore with an expansion
joint on each pier, but without track expansion joints.

As seen in Germany, semi-integral bridges are being designed and built, i.e. with-
out pier bearings, but with structural expansion joints, and in some cases without
track expansion joints.

1.4.3.2 Long-Span Bridges
The typologies being used to date are similar to road bridges. Deck trusses with
variable edge have been used up to 250 m span. For longer spans (up to 450 m), arch
bridges have been successfully built. For longer spans, cable-stayed bridges are the
usual solution. In these cases, the decks are trussed to give greater rigidity to the
system and often have two levels: the lower one for rail traffic and the upper one
for road traffic.

Table 1.1 summarises the bridges for high-speed lines with the longest spans built
to date.

1.5 The Landscape and the Design of High-Speed
Railway Bridges

1.5.1 The Traveller’s Experience

The 21st century society, at least in the West, is governed by feelings [9]. The quality
of any service is measured by the user experience [10]. High-speed rail is no excep-
tion to this premise.

Traditionally, when the designer analysed the engineering work and its relation-
ship with the landscape, they did so taking into account only the view of the observer
of the bridge from the surrounding environment. In this way, it is common to anal-
yse from the different points from which the bridge or viaduct can be observed what
modification it will introduce into the pre-existing landscape. The height and config-
uration of the abutments, the cadence of the deck spans, the relative dimensions of
the deck and its spatial relationship with the morphology of the site are the aspects
on which the bridge designer concerned with the landscape reflects.
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1 m high parapet for
maintenance

Noise barrier panels
with partial or complete
opacity to avoid fow
and bat impact
where needed

OLE posts on the external
side of the deck following
the modulation of the piers

What a HS2 user would see from the window of the train if a solid noise barrier is
arranged (static image on the left and train running at a speed of 340 km/h on the right).
Users wouldn’t even notice they are crossing the Colne Valley

Figure 1.16 Example of a standard anti-noise panel on the bridge (Courtesy of Knight
Architects).

However, it is clear that this is no longer enough. The 21st century bridge designer
must also consider the landscape that the traveller will be able to contemplate when
the train travels over the bridge being designed [11].

When this aspect is analysed, it is discovered that the structure itself rarely
obstructs the view from the train in any way. However, it is common that parts of
the bridge equipment, especially the anti-noise or wind barriers (when these are
opaque), disturb or limit the view of the landscape from the train (Figure 1.16).

If the bridge is short, the loss of vision caused by such panels would only be for
a few seconds. However, when the tracks run continuously through urban or
peri-urban areas, the tunnel effect can be annoying or uncomfortable for the user.
The same applies when the railway line passes through a point of outstanding
scenic beauty, such as a major river crossing, if the passenger’s view of the outside
is limited by some element of the bridge.

In such cases, it will be important for the viaduct designer to be aware of whether
the structure requires any type of panelling that will at least partially obstruct
the vision of the traveller. Whether it is necessary to install panels or whether
it is the structure itself that is disturbing, for example if the resistant section of
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Transparent noise barrier
panels where needed

OLE posts on the external
side of the deck following the

modulation of the piers

Concrete surface with vertical
grooves to guide water coming from

the noise barrier/parapet/fowl and
bat protection system

What a HS2 user would see from the window of the train
with the transparent Specimen Design barrier (static
image on the left and train running at a speed of 340 km/h
on the right). At train speed, motion blur makes the vertical
elements of the edge condition almost completely invisible,
achieving an unobstructed view of the Colne Valley.

3 m high linear elements act as a fowl
and bat protection barrier and as a

support for transparent panels when
a noise barrier is needed

1 m high linear elements act as a
parapet for maintenance

Figure 1.17 Study of the view from the train as it passes over the Colne Valley Viaduct,
England, UK (Courtesy of Knight Architects).

the deck is U-shaped, the project team must analyse whether it is possible to
reconcile functional requirements (noise emission control, wind safety, etc.) with
the possibility of the traveller being able to enjoy the landscape at least for a fleeting
glimpse (Figure 1.17).

1.5.2 The Bridge in the Landscape

The railway layouts of the 19th century and those built later for moderate traffic
speeds allowed for the adaptation of the railway line to the orography, except in
mountainous areas. However, compared to roads, railways have always needed more
bridges and viaducts to overcome the natural obstacles they have encountered, as
the layout conditions have been and still are more rigorous in the case of railways
compared to the design requirements of roads.

The railway has transformed and continues to transform the landscape through
which it passes. High-speed lines with their very wide radii of curvature in plan
of about 8000 m minimum for 350 km/h lines require the construction of a large
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number of viaducts and tunnels as soon as the terrain has some movement. Even
in flat terrain, it is common for modern high-speed lines to be built in structure in
order to maintain transverse territorial permeability under bridges. It is very impor-
tant in these cases to decide correctly on the level of the railway grade on the ground
because of its implications for the design of the viaducts.

The participation of bridge specialists in the early stages of the project is important
for the definition of the basic geometry of the line and to avoid starting the project
with initial conditioning factors that could damage the overall quality of the solution,
for example: the transverse permeability, the landscape implications of the design,
the technical quality, or the construction cost of the work.

Sections 1.5.2.1 and 1.5.2.2 analyse the landscape aspects of bridges and viaducts
on high-speed lines in different scenarios.

1.5.2.1 Long Viaducts with Low Vertical Level
If the level is relatively low in relation to the ground (less than 8 m), the spans have to
be short in order to leave a sufficient clearance between the bottom of the deck and
the natural ground. If it is also necessary to install noise barriers, the height of the
noise barrier must be added to the actual height of the deck under the track, which
will make the bridge visually very heavy. One way to solve this problem is to use ‘U’
sections, with the structure itself acting as a noise barrier so that the clear span is as
large as possible (Figure 1.18).

However, whenever possible, it is better to raise the level somewhat to avoid
the aforementioned problems. From the point of view of the cost of the bridge, an
increase in the height of the piers from 8 to 12 m has little influence on the final
cost of the structure, since there will only be a slight variation in the foundations
and a higher cost of the pier shafts (which in any case is a small cost in relation
to the total cost of the bridge) and this increase in height will not condition the
construction process of the deck. In any case, and whenever it is necessary to build
either noise barriers or U-shaped structural sections, it is essential to study the
shapes and finishes in order to break up the massiveness of the faces.

1.5.2.2 Long Viaducts with Medium or High Level
As explained above, when viaducts are long, it is necessary to fix the deck to the
infrastructure. If the bridge is also very high, the connecting element(s) will play a
special role in the formal appreciation of the bridge in the landscape.

Figure 1.18 Semi-through deck structure (Source: FHECOR).
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Figure 1.19 Isostatic deck, China (Courtesy of China Railways).

Figure 1.20 La Savoureuse Viaduct (2011), France (Courtesy of Wilkinson Eyre).

Isostatic Bridges When the viaduct is made up of a succession of isostatic spans, it is
common for both the deck itself and the piers to be particularly robust. As the decks
are isostatic, they are less efficient than continuous decks and require a greater depth
(see Chapter 3). The piers also have to individually withstand the corresponding
braking load and therefore require larger dimensions than in the case of continuous
structures (Figure 1.19).

The La Savoureuse Viaduct (Figure 1.20) has recently been built, breaking with
the French tradition of continuous bridges. In this viaduct, the piers are formed by
a tetrapod-shaped structure supported at one of its vertices, which on the one hand
breaks the massiveness of the piers of isostatic bridges and on the other hand reduces
the span of the isostatic spans. The result is a unique structure that works well in the
surrounding views.

Continuous Bridges Continuous bridges have the advantage of reducing the number
of expansion joints in the structure. When these bridges are long, they require one
or more points to fix the deck longitudinally.

The first example of this way of solving the central connection by means of a sin-
gle element is the Pfieffetal Viaduct in Germany, 1989 (Figure 1.21). This bridge is
actually an isostatic span bridge, but because of its height the piers cannot carry the
braking load, which is transferred to a portal pier with two inclined piers. The shape
of the V-shaped valley makes the role of this central pier very clear.
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Figure 1.21 Pfieffetal Viaduct (1989), Germany (Courtesy of Wolfgang Pehlemann).

Figure 1.22 Bridge over the river Main at Gemünden (1984), Germany (Courtesy of
Deutsche Bahn AG).

Another type of situation occurs when a long viaduct is required which can be
resolved with modest spans, but which presents a singular span due to having
to cross a major obstacle locally. This type of solution perhaps begins with the
Gemünden Bridge (Figure 1.22) , which serves as the cover of the most widely read
book on bridge aesthetics [12].

However, to return to very long viaducts that require a single span, the revolution
brought about in Germany by the Deutsche Bahn Guide [2] is worth mentioning. It
stipulates that long bridges for the Deutsche Bahn should generally be semi-integral
and as far as possible without a track expansion joint.

The first long bridges designed according to these guidelines are the Unstruttal
(Figure 1.23) and Gänsebachtal (Figure 1.24) viaducts [3]. Both bridges are superb in
terms of design, structural efficiency, maintenance of both bridge and track, as well
as structural innovation, with an obvious reading on the landscape to the trained eye.

Singular Bridges Another classic design situation occurs when the obstacle to be
overcome is significant and it is necessary to build at least one large span. This is
a situation that occurs when crossing deep valleys or when passing over very wide
and fast-flowing rivers or streams.

When crossing deep valleys, it is common for the bridge to be a short interval
between tunnels. This is the case, for example, with the colossal Beipanjiang Bridge
(Figure 1.25) on the high-speed line from Shanghai to Kunming in the Chinese
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5.2 Methods for Dynamic Calculations and Structural
Response

5.2.1 Modal Superposition

The modal superposition method can be formulated for finite elements as a function
of the degrees of freedom of the structure. In this case, the eigenforms result from
the analysis. Another approach, valid for simple structures is to assume a certain
shape for the eigenmodes. The two approaches are developed below.

5.2.1.1 Matrix Formulation for Finite Element Analysis
The dynamic equilibrium of a system with multiple degrees of freedom (MDOF) can
be written in matrix form as expressed in Eq. (5.13).

Mÿ + Cẏ + Ky = F(t) (5.13)

By multiplying both sides of the equation by the inverse of the mass matrix M, this
equation becomes:

ÿ + M−𝟏Cẏ + M−𝟏Ky = M−𝟏F(t) (5.14)

In most practical cases, M can be assumed to be a diagonal matrix which is formed
by the mass lumped at the nodes of the model. The values of the diagonal (i = j), Mi,
would be the translational or rotational mass lumped at the node corresponding to
degree of freedom i, with all other terms (i≠ j) being equal to 0.

Modal superposition is a simplified technique to solve the dynamic analysis of
systems with n degrees of freedom (MDOF) by reducing them to solving a number
m (m≤n) of SDOF systems. This simplification is achieved by eigen-decomposition
of matrix M−1K. 𝚽 will denote the matrix whose columns are formed by the
eigenmodes.

Eigenvectors are not unique and to avoid this indeterminacy, they can be nor-
malised, for instance, by imposing that their Euclidean norm is equal to 1.

The eigenvectors of a matrix form a base and y can be expressed in terms of this
base as shown in Eq. (5.15):

y
⏟⏟⏟

n⋅1

= 𝚽
⏟⏟⏟

n⋅m

q
⏟⏟⏟

m⋅1

(5.15)

By introducing Eq. (5.15) into (5.13), the following expression is obtained:

M𝚽q̈ + C𝚽q̇ + K𝚽q = F(t) (5.16)

By multiplying Eq. (5.16) by the transpose of the eigenvalue matrix 𝚽T, Eq. (5.17)
is obtained:

𝚽TM𝚽
⏟⏟⏟

𝚲M=diag(M∗
i )

q̈ + 𝚽TC𝚽
⏟⏟⏟

𝚲C=diag(C∗
i )

q̇ + 𝚽TK𝚽
⏟⏟⏟

𝚲K=diag(K∗
i )

q = 𝚽TF(t) (5.17)

It can be demonstrated that the eigenvectors of M−1K are orthogonal with respect
to both M and K (for a demonstration see the Appendix of reference [3]). This makes
matrices 𝚽TM𝚽 and 𝚽TK𝚽 diagonal.
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To decouple the system of equations it is also necessary that Matrix C be orthog-
onal with respect to 𝚽. This is possible by using a type of damping called Caughey
damping, for which the damping matrix is expressed as a sum of powers of M−1K.

C = M
n∑

i=0
ai(M−𝟏K)i (5.18)

This is equivalent to having a damping index for mode i equal to:

𝜉i =
1
2

n−1∑
j=0

aj(𝜔i)2j−1 (5.19)

The values ai can be determined for the system of Eq. (5.19), by imposing values
of the damping index for each vibration mode.

With this assumption Eq. (5.17) becomes a series of m independent SDOF differ-
ential equations, which are easy to solve. m is the number of eigenvalues considered
in the analysis. If the elements of diagonal matrix 𝚲K are named M∗

i , the elements
of diagonal matrix 𝚲K are named K∗

i and the elements of diagonal matrix 𝚲C, are
named C∗

i , then the expression of Eq. (5.20) holds:

q̈i +
C∗

i

M∗
i

q̇i +
K∗

i

M∗
i

qi =
n∑

j=1

𝜙−1
ij

M∗
i

Fj(t)jy

C∗
i = 𝛟−𝟏

i C𝛟i

M∗
i = 𝛟−𝟏

i M𝛟i

K∗
i = 𝛟−𝟏

i K𝛟i (5.20)

In Eq. (5.20), jy is a directional coefficient which is equal to 1.00 if force Fj(t) goes
in the direction of degree of freedom i and is equal to 0.00 if it does not.

The forces applied on the nodes Fj(t) can be simulated by triangular pulses
(Figure 5.8). The time between pulses can be approximated as the spacing between
bogies, D, divided by the velocity of the train, v. The duration of the triangular pulse
would be equal to the sum of the distances to the adjacent nodes divided by the
velocity.

Once the independent SDOF systems have been solved, their effects need to be
superimposed. This can be done, of course by direct summation of the displace-
ments, or acceleration time histories. However, this procedure is time consuming.
For this reason, it is common practice to determine the maximum response of each
vibration mode at a given location and superimpose the maximum effect by using
a combination rule that considers that the maximum response from the different
vibration modes is not likely to occur simultaneously. A classical combination rule
is the Square Root of the Sum of the Squares (SRSS), given in Eq. (5.21):

E =

√√√√ m∑
j=1

E2
j (5.21)
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Figure 5.8 Triangular pulses simulating the train loads.

where:

E is the total estimated maximum response (displacement, acceleration, velocity) of
the structure

Ej is the maximum response (displacement, acceleration, velocity) of vibration
mode j.

This criterion can, however, be unsafe when the periods of the vibration modes
differ by less than 10%. In such cases the Complete Quadratic Combination (CQC)
should be applied. This combination criterion is defined in Eq. (5.22):

E =

√√√√ m∑
k=1

m∑
j=1

EkrkjEj =
√

ETrE

rkj =
8
√

𝜉k𝜉j
(
𝜉k + 𝜌kj𝜉j

)
𝜌

3∕2
kj(

1 − 𝜌2
kj

)2
+ 4𝜉k𝜉j𝜌kj

(
1 + 𝜌2

kj

)
+ 4

(
𝜉2

k + 𝜉2
j

)
𝜌2

kj

𝜌kj =
Tk

Tj
≤ 1 (5.22)

This expression is very general and accounts for the possibility of having different
damping indexes for the different vibration modes.

5.2.1.2 Formulation Based on Assumed Eigenforms
The formulation of Section 5.2.1.1 is the general formulation used in finite element
analysis. It is also possible to formulate the problem by assuming a certain shape for
the eigenforms, respecting the boundary conditions. For a simply supported beam,
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Figure 5.9 Sinusoidal eigenforms for a simply supported beam.

for example, a sine function can be adequately used to model the eigenforms (see
Eq. (5.23) and Figure 5.9):

𝜙(x) = 𝜙0 sin n π
L

x (5.23)

To maintain the criterion that the norm of the eigenforms is equal to 1.00, 𝜙0
should be fixed as follows:

∫ L
0 𝜙2(x)dx

L
= 1.00 =

𝜙2
0

L ∫
L

0
sin2

(
n π

L
x
)

dx =
𝜙2

0

2L∫
L

0

(
1 − cos

(
2n π

L
x
))

dx

=
𝜙2

0

2L

[
x − L

2nπ
sin

(
2n π

L
x
)]L

0
=

𝜙2
0

2
= 1.00 → 𝜙0 =

√
2 (5.24)

In general, to satisfy varying boundary conditions (fixed displacements or rota-
tions), the eigenforms can take on the shape shown in Eq. (5.25) [3]:

𝜙(x) = a cos nπ
L

x + b sin nπ
L

x + c cosh nπ
L

x + d sinh nπ
L

x

𝜕4𝜙(x)
𝜕x4 = n4π4

L4
⏟⏟⏟

(an)4

𝜙(x) (5.25)

Note the property shown in the second line of the equation (i.e. that the fourth
derivative of the eigenform with respect to x is equal to the eigenform times the
fourth power of the form coefficient an).

An expression for the natural frequencies of the system can be determined from
dynamic equilibrium conditions. It is well known from the static sectional equilib-
rium equation of moments that the moment is proportional to the curvature and the
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Figure 5.10 Equilibrium of a beam slice.

proportionality constant is the flexural stiffness of the section:

M = −EI
𝜕2y
𝜕x2 (5.26)

From the equilibrium conditions of a slice of a beam, it can be established that the
shear force is the derivative of the bending moment and that the load per meter, p,
applied on the slice minus the inertial forces is equal to the derivative of the shear
force (see Figure 5.10).

V = 𝜕M
𝜕x

= −EI
𝜕3y
𝜕x3

p − mÿ = −𝜕V
𝜕x

= EI
𝜕4y
𝜕x4 (5.27)

Developing the second expression of Eq. (5.27), and assuming that the slice is
vibrating freely, so that p = 0:

mÿ + EI
𝜕4y
𝜕x4 = p(x, t) = 0

y = 𝜙(x)q(t)

m𝜙q̈ + EI𝜕
4𝜙

𝜕x4 q = 0

q(t) = a cos𝜔t + b sin𝜔t

q̈(t) = −𝜔2q(t)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
→ −m𝜙𝜔2q + EI𝜕

4𝜙

𝜕x4 q = 0

→ 𝜔2 = EI
m

1
𝜙

𝜕4𝜙

𝜕x4 → 𝜔 =

√
EI
m

1
𝜙

𝜕4𝜙

𝜕x4 (5.28)

With this approximation – i.e. assuming a shape for the eigenmodes – Eq. (5.20)
can be reformulated as follows:

q̈n +
C∗

n

M∗
n

q̇n +
K∗

n

M∗
n

qn = 1
M∗

n ∫
L

0
Fj(x, t)𝜙n(x)dx

C∗
n = c∫

L

0
(𝜙n(x))2dx = cL
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M∗
n = m∫

L

0
(𝜙n(x))2dx = mL

K∗
n = 𝜕4𝜙

𝜕x4
EI
𝜙n ∫

L

0
(𝜙n(x))2dx = 𝜕4𝜙

𝜕x4
EI
𝜙n

L

→ q̈n + c
m

q̇n + 𝜕4𝜙

𝜕x4
EI
𝜙nm

⏟⏞⏞⏟⏞⏞⏟
𝜔2

qn = 1
mL∫

L

0
Fj(x, t)𝜙n(x)dx (5.29)

For the case of a simply supported beam, subjected to a given generic load
Fmax f (𝜏), the application of Eq. (5.29) would result in:

𝜙n = 𝜙0 sin nπ
L

x

𝜕4𝜙

𝜕x4 = 𝜙0
n4π4

L4 sin nπ
L

x = n4π4

L4 𝜙n(x)

y(t) = 𝜙n(x)qn

q̈n + c
m

q̇n + n4π4

L4
EI
m

⏟⏟⏟
𝜔2

qn =
Fmax

mL ∫
L

0
f (𝜏, x)𝜙n(x)dx (5.30)

To obtain the deflection at a given abscissa, y(x), the value of q(x) must be multi-
plied by the value of the eigenform at that coordinate so that:

y(x) = q(x)𝜙0 sin nπx
L

(5.31)

Applications of this equation are given in Sections 5.2.2 and 5.2.3.

5.2.2 Response to the Isolated Load

It is straightforward to apply the formulation of Eq. (5.30) to the case of a simply
supported beam subjected to a moving load. The dynamic equilibrium for the time
comprised between the moment the load enters the bridge until it exits the bridge
is given by Eq. (5.32). Once the load exits the bridge, the solution will be that of a
damped harmonic system subjected to the initial position and velocity conditions
present at the time the load exits the bridge.

q̈n(x) +
c
m

q̇n(x) +
n4π4

L4
EI
m

⏟⏟⏟
𝜔2

qn(x) =
P

mL∫
L

0
f (𝜏, x)𝜙n(x)dx

f (𝜏, x) = 𝛿(x − vt) → ∫
L

0
𝛿(x − vt)𝜙n(x)dx = 𝜙n(vt)

q̈n(x) +
c
m

q̇n(x) + 𝜔2qn(x) =
P

mL
𝜙0 sin

⎛⎜⎜⎜⎜⎜⎝
nπ
L

v
⏟⏟⏟

𝜔f

t

⎞⎟⎟⎟⎟⎟⎠
(5.32)
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𝛿(x) in Eq. (5.32) is Dirac’s delta function which is equal to infinity when x = 0 and
equal to 0 otherwise. It has the property shown in Eq. (5.33):

∫ 𝛿(x − a)f (x)dx = f (a) (5.33)

The problem of Eq. (5.32) is in fact the same problem of forced vibrations solved in
Appendix A. However, in this case, damping is accounted for. It can be verified that
the sum of a sine function plus a cosine function with natural frequency equal to
𝜔f is a particular solution of Eq. (5.32). The full solution to the equation will be the
sum of the particular solution and the general solution to the homogenous equation
(damping is ignored here for the part of the solution corresponding to forced vibra-
tion, since it will be neglectable, for typical bridge damping ratios, because of its
short duration):

q = A cos𝜔f t + B sin𝜔f t + e−𝜉𝜔t(C cos𝜔dt + D sin𝜔dt)

q̇ = −A𝜔f sin𝜔f t + B𝜔f cos𝜔f t − 𝜉𝜔e−𝜉𝜔t(C cos𝜔dt + D sin𝜔dt)

+ 𝜔de−𝜉𝜔t(−C sin𝜔dt + D cos𝜔dt)

q̈ = −A𝜔2
f cos𝜔f t − B𝜔2

f sin𝜔f t + 𝜉2𝜔2e−𝜉𝜔t(C cos𝜔dt + D sin𝜔dt)

− 𝜉𝜔d𝜔e−𝜉𝜔t(−C sin𝜔dt + D cos𝜔dt) − 𝜉𝜔d𝜔e−𝜉𝜔t(−C sin𝜔dt + D cos𝜔dt)

− 𝜔2
de−𝜉𝜔t(C cos𝜔dt + D sin𝜔dt)

q̈n(x) + 2𝜉𝜔q̇n(x) + 𝜔2qn(x) =
P
m
𝜙0 sin𝜔f t (5.34)

The values of A and B can be identified by imposing that the terms in cos𝜔f t and
sin𝜔f t must cancel out, as shown in Eq. (5.35)

⎧⎪⎪⎨⎪⎪⎩
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+ 4𝜉2𝜔2𝜔2
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(5.35)

The values of coefficients C and D can then be determined from the initial condi-
tions of a system that is initially at rest:
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q̇(0) = 0 = B𝜔f − 𝜉𝜔C + 𝜔dD
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The position and velocity of the structure can be determined when the force exits
the structure as follows:
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The above equations can be applied for the number of eigenmodes considered. To
obtain the actual displacements, the generalised coordinates q, should be multiplied
by the value of the eigenmode at the given location (see Eq. (5.31)). Therefore, the
contribution to the deflection at centre span for pair values of n will be nil.

To see an application of this method, the same example already analysed in
Section 5.1.4 is considered. The example consists in a simply supported bridge with
a span, L, of 4500 m. The area of the section is 7.96 m2 and the inertia 7.71 m4. The
elastic modulus of concrete is taken as 36.2 GPa. Additionally, an upper-bound
superimposed dead load equivalent to G2,sup = 137.6 kN/m is present. So, the total
upper-bound mass of the structure is M = (7.96 ⋅ 2.5+ 13.76) ⋅ 45 = 1514.7 ton. The
first natural period of this structure is T1 = 0.448 s. It is assumed that the train is a
high-speed train, and that the maximum velocity is 350 km/h (i.e., v∼ 100 m/s) and
that the damping index is 1% as recommended by EN 1991-2 (see Table 5.3).

Figure 5.11 shows the response of the system in terms of maximum deflection
at centre span for the first four modes of vibration. It is very clear that in such a
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Figure 5.11 Deflections due to the first four vibration modes – plotted separately.

system, only the first mode of vibration is of significance (note that the deflection of
modes 2, 3, and 4 is plotted on the secondary axis on a different scale, roughly 100
times larger). Modes with pair values of n do not contribute at all to the deflection
at centre span since the deflection of the corresponding eigenmodes is nil at that
point. Figure 5.12 shows the deflection due to the superposition of the first four
modes compared to that of the first model only. The maximum deflection of the
superposed modes is 0.64% lower than that of the first mode only and the difference
can barely be seen.

Table 5.4 shows the natural frequencies of the first four modes, the maximum
centre span deflection due to each mode, the deflection due to the sum of the modes
and the deflection obtained by the SRSS criterion, which would be applicable since
the difference between the periods of the first four modes is much larger than 10%.
The SRSS criterion is safe sided for this case since the contribution of the third mode
is negative at centre span.

Table 5.4 Maximum deflection in the structure [mm].

Mode 1 2 3 4

𝜔 (rad/s) 14.03 56.14 126.31 224.55
T (s) 0.448 0.112 0.050 0.028 Sum (mm) SRSS (mm)
Deflection (mm) 3.815 0.000 −0.029 0.000 3.790 3.815
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Figure 5.12 Deflections due to the additive effect of the first four vibration modes.

5.2.3 Response to the Train Loads

The response to the train load can be computed by superposing the effect of a
number N of axes with a time delay equal to the distance between bogies, D, divided
by the velocity of the train. In the case of the train load, the maximum response is
not obtained for the fastest train passage but for a time between loads equal to the
natural period of the structure. The following figures have been obtained by apply-
ing this methodology to the example considered in Section 5.1.4. In this case the
natural period is 0.448 s. 14 bogies carrying a total load of 340 kN each, and spaced
22 m apart, are traveling at a velocity equal to 22/0.448 = 49.1 m/s (176.8 km/h).
The damping index 𝜉 is assumed to be 1%. As a simplification, which is justified by
the results shown in Section 5.2.2, only the first vibration mode will be considered
here. Figure 5.13 shows the individual effect on the bridge deflections of the
passage of the first 4 bogies. The vibrations once the train leaves the structure are
in synchronicity.

Figure 5.14 shows the superposition of the passage 7 and 14 bogies, compared to
the effect of one bogie, in terms of maximum deflection. A clear resonant effect can
be seen. The deflection increases with time, until the last bogie leaves the deck, after
which moment the maximum deflection goes down as only the vibrations left over
from the passage of the 14 bogies are active. These vibrations gradually decrease due
to damping.
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Figure 5.15 Dynamic Load Factor (𝛷) as a function of the train velocity.

Figure 5.15 shows the Dynamic Load Factor as a function of the train velocity.
A very clear resonant peak can be observed at 177 km/h (corresponding to the first
natural period of vibration).1 Also shown in the figure is the effect of two bogies
(which is the maximum number that will be on the bridge at a given time). With
only two bogies, there is no resonant phenomenon and, in this case the response
increases with the velocity of the train. This is logical as more energy is transferred
to the structure and the ratio between the load duration and the natural period of
the structure is not too low (td/T ∼ 0.5 for a velocity of 350 km/h).

5.2.4 Effect of Damping

In real structures damping values are low (going from 0.5–1% for steel decks to 2% for
concrete decks). These values are not very significant for individual loads. However,
when train load is considered, the time lapse between the passage of the successive
bogies provides some room for action by damping. Even with these low damping
indexes the effect is quite significant. Figure 5.16 shows how the Dynamic Load

1 It is interesting to note that for such a speed, a dynamic analysis would not be required by
EN 1991-2:2003, despite the fact that resonance occurs. In this case, the Dynamic Load Factor
estimated according to Eq. (5.3) would be only 1.03. However, this factor is applied to the LM71 or
SW/0, SW/2 trains which are much heavier than the real trains. For the LM71 train, the maximum
static deflection would be 18.6 mm, much larger than the 13.44 mm of the real train accounting for
the dynamic behaviour. This comparison demonstrates that such cases are covered by the envelope
loading.
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Figure 5.16 Effect of damping on Dynamic Load Factor.

Factor varies when there is no damping compared to 1% and 2% damping indexes.
For the peak response, 𝛷 increases from 3.2 for a 2% damping index to close to 5.6 if
damping is not accounted for.

5.2.5 Dynamic Interaction Between Vehicle and Structure

The interaction between vehicle and structure normally has a favourable effect on
the dynamic behaviour of railway bridges. According to [4], its effects are most
noticeable in simply supported bridges with small spans and low damping. In these
cases, the reduction in accelerations and displacements at resonance can reach 30%.

There are several levels for the modelling of the interaction between vehicle and
structure. The most sophisticated models consider not only the interaction between
vehicle and structure but also the interaction with the track, in which rails, sleep-
ers, and ballast are all considered (see Figure 5.17). Such models, however, are too
complex and are more useful for research than for practical applications.

A second-level approximation, which has been applied in practice, considers the
modelling of each vehicle with two bogies, and represents the connection between
car and bogie and the connection between bogie and each axle (see Figure 5.18).
In this case the body of the vehicle is assigned a mass (M) and a rotational inertia (J).
The vehicle is connected, though secondary suspension (modelled by a spring -Ks-
plus a damper -Cs- placed in parallel), to the bogie frame which is also assigned a
mass (MB) and a rotational inertia (JB). Each axle is connected to the bogie frame by
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Figure 5.17 Dynamic interaction model considering the interaction between vehicle,
track, and structure [5].
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Figure 5.18 Full vehicle–structure interaction model (Source: taken from [4]).
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Figure 5.19 Simplified model to
account for vehicle–
structure interaction.

secondary suspension modelled as a coupled spring/damper pair (Kp/Cp) for each
axle. Finally, the mass of the wheels (Mw) is applied directly on the structure.

There are also simplified models in which the axles are considered as indepen-
dent elements and only primary suspension is considered. Each one can be mod-
elled as shown in Figure 5.19. In this case Ms corresponds to the suspended mass
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B.3.5 Contreras Bridge

B.3.5.1 Data Summary

Owner ADIF
Place Contreras Reservoir, Spain
HSR Line Madrid – Levante
Designer Carlos Fernández Casado CFC
Contractor AZVI-Contractora San José
Main span 261 m
Deck Width 14.20 m
Length 587 m
Deck type Continuous box girder
Material Concrete
Typology Arch
Start construction 2007
Completion 2009

B.3.5.2 Description
The arch, with a span of 261 m, was divided into six parts by vertical columns.
The arch follows a polygonal guideline. The antifunicular of the arch is perfect in
this way, reducing the deflections that would exist in the area between the vertical
columns if the arch were perfectly curved.

It is a reinforced concrete arch bridge with a continuous prestressed concrete box
deck and two access viaducts. The span of the arch is 261 m and a rise at the centre
is 36.95 m, and therefore a rise -to-span ratio of 1/6.77.

Further Reading
Manterola, J., Martínez, A., Navarro, J.A., et al. (2008): Puente de ferrocarril de alta

velocidad sobre el embalse de Contreras. Presented at: IV Congreso ACHE, Valencia.
Manterola, J., Martínez, A., Navarro, J.A., and Martín, B. (2012). Puente arco de

ferrocarril sobre el embalse de Contreras en la línea de alta velocidad
Madrid-Levante. Revista Hormigón y Acero 63 (264).
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Figure B.33 Contreras Bridge (Courtesy of Carlos Fernández Casado CFC & ADIF).

Figure B.34 Contreras Bridge (Courtesy of Carlos Fernández Casado CFC & ADIF).
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B.3.6 Viaduct Over River Ulla

B.3.6.1 Data Summary

Owner ADIF
Place Catoira, Spain
HSR Line Atlantic Axis Pontevedra – La Coruña
Designer IDEAM
Main span 240 m
Contractor DRAGADOS-TECSA
Deck Width 14 m
Length 1620 m
Deck type Continuous composite deck
Material Steel
Typology Steel Truss
Start construction 2011
Completion 2015

B.3.6.2 Description
The viaduct over the river Ulla where it flows into the Arosa Estuary. The design
minimises the number of piers on the course of the river and tries to seek the max-
imum transparency and the minimum visual impact possible on the surrounding
landscape. The bridge is a composite variable depth structure with three large cen-
tral spans over the water measuring 225+ 240+ 225 m and 120 m access spans. The
deck has a variable depth with 17.90 m on the piers section and 9.15 m at the cen-
tre of the span. This depth remains constant on the access spans. The four main
piers were reinforced to resist deck rotation and control the level flexion transmit-
ted to the foundations through the frame effect, thus preventing over-sizing. For this
reason, the main piers located at the outer edges of the 225 m spans were designed
with two free-standing partitions driving into the foundations and pier capitals. The
remaining piers are conventional. The deck support over these piers is free spherical
lengthwise bearings. The track has expansion joints coinciding with the expansion
structural joint in the abutments.

Further Reading
Millanes, F., Ortega, M., and Matute, L. (2014). Viaduct over river Ulla: an outstanding

composite (steel and concrete) high-speed railway viaduct. Structural Engineering
International 24.

Millanes, F., Ortega, M., and Estévez, R. (2015). Viaduct over Ulla River in the Atlantic
high-speed railway line: A composite (steel–concrete) truss world record. (ACHE,
ELSERVIER, Hormigón y Acero 66(277).
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Figure B.35 Ulla River Viaduct (Courtesy of ADIF).

Figure B.36 Ulla River Viaduct (Courtesy of ADIF).
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B.3.7 Almonte Bridge

B.3.7.1 Data Summary

Owner ADIF
Place Almonte River, Cáceres, Spain
HSR Line Madrid – Extremadura – Portuguese border
Designer Arenas y Asociados
Contractor FCC Fomento de Construcciones y Contratas
Main span 384 m
Deck Width 14.2 m
Length 996 m
Deck type Continuous box girder
Material Concrete
Typology Arch
Start construction 2011
Completion 2016

B.3.7.2 Description
The bridge has a large concrete arch with an upper deck spanning 384 m over the
Alcantara reservoir. This large arch is the main element of a 996 m long viaduct,
consisting of 12 approach spans with 45 m spans, and two additional spans of 36 m
at the ends.

The deck has a prestressed concrete box section with a constant 3.1 m depth. The
viaduct piers have a maximum height of 65.3 m. Both those found at ground and
those supported on the arch have a variable octagonal cross-section, the aerodynam-
ics of which are beneficial for the arch span, given its large span. Almonte’s main
mechanism for taking the longitudinal forces from trains braking is the fixed point
located at the apex of the arch. At the centre of the bridge there is a 42 m long fixed
point connecting the arch and the deck. Horizontal braking loads are transferred
through the fixed point from the deck to the arch and then into the abutments. All
the columns are connected to the deck with bearings, allowing the deck to move
longitudinally with respect to the columns.

Further Reading
Arenas, J.J., Capellán, G., Martínez, J. et al. (2016). Viaduct over River Almonte. Design

and Analysis. In: Presented at: IABSE Symposium: Challenges in Design and
Construction of an Innovative and Sustainable Built Environment, Stockholm,
Sweden.

Capellán, M. (2015). Puente arco de alta velocidad sobre el río Almonte. ROP Revista de
Obras Públicas n∘ 3562 Madrid. Spain.
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Figure B.37 Almonte Bridge (Courtesy of Arenas Asociados & ADIF).

Figure B.38 Almonte Bridge (Courtesy of Arenas Asociados & ADIF).
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