

Rolf Kindmann

Stahlbau

Teil 2: Stabilität und Theorie II. Ordnung

- erfolgreich eingeführtes Werk in 5. Auflage überarbeitet und aktualisiert
- bewährt für Studium und Praxis seit 1998
- mit zahlreichen Beispielen

Zentrale Themen sind die Stabilität von Stahlkonstruktionen und der Nachweis der Tragfähigkeit. Das tatsächliche Tragverhalten wird erläutert und die theoretischen Grundlagen werden hergeleitet zweckmäßige Nachweisverfahren empfohlen und mit Beispielen veranschaulicht.

+49 (0)30 470 31-236 marketing@ernst-und-sohn.de www.ernst-und-sohn.de/3219

, ilt ausschließlich für Deuts

Inkl. MwS

Rolf Kindmann **Stahlbau** Teil 2: Stabilität und Theorie II. Ordnung

5. völlig neu überarbeitet Auflage · 2021 · 580 Seiten · 308 Abbildungen · 101 Tabellen Softcover ISBN 978-3-433-03219-0 € 55* eBundle (Print + ePDF) ISBN 978-3-433-03435-4 ca. € 79*

ÜBER DAS BUCH

Zentrale Themen des Buches sind die Stabilität von Stahlkonstruktionen die Ermittlung von Beanspruchungen nach Theorie II. Ordnung und der Nachweis ausreichender Tragfähigkeit. Das tatsächliche Tragverhalten wird erläutert und die theoretischen Grundlagen werden hergeleitet zweckmäßige Nachweisverfahren empfohlen und die erforderlichen Berechnungen mit Beispielen veranschaulicht. Der Inhalt des Buches ist wie folgt gegliedert:

- Tragverhalten und Nachweisverfahren
- Stabilitätsproblem Biegeknicken und vereinfachte-Nachweise
- Stabilitätsproblem Biegedrillknicken und vereinfachte Nachweise
- Nachweise unter Ansatz von geometrischen Ersatzvimperfektionen

Theorie II. Ordnung für Biegung mit Normalkraft Theorie II. Ordnung für beliebige Beanspruchungen Aussteifung und Stabilisierung

Stabilitätsproblem Plattenbeulen und Beulnachweise

BEST	FELL	UNG
------	-------------	-----

Anzahl	ISBN /	Titel	Preis
	978-3-433-03219-0	Stahlbau	€ 55*
	978-3-433-03435-4	Stahlbau eBundle (Print + ePDF)	ca.€79*

	Privat	Geschäftlich	
Bitte richten Sie Ihre Bestellung an: Tel. +49 (0)30 47031-236	Firma Abteilung	UST-ID Nr.	
marketing@ernst-und-sohn.de	Name Vorname	Telefon	Fax
108208 Free Shipping			
	Straße Nr.		
	PLZ/Ort/Land	E-Mail	

www.ernst-und-sohn.de/3219

Datum/Unterschrift

Vorwort

Die Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen sowie Berechnungen nach Theorie II. Ordnung sind zentrale Themen des Stahlbaus. Aus Gründen der Sicherheit und Wirtschaftlichkeit muss sie jeder in der Praxis tätige Ingenieur beherrschen und die zweckmäßigen Nachweisverfahren kennen.

Das vorliegende Buch ist als Lehrbuch für Studierende an Technischen Hochschulen, Universitäten und Fachhochschulen sowie für Ingenieure in der Baupraxis konzipiert. Im Vordergrund stehen das Verständnis für das Tragverhalten, der Zusammenhang mit den theoretischen Grundlagen und die Durchführung zweckmäßiger Tragfähigkeitsnachweise. Besonderer Wert wird auf die Vermittlung von Methoden, Verfahren und Vorgehensweisen gelegt, die mit zahlreichen Bildern und Berechnungsbeispielen veranschaulicht werden.

Die letzte Auflage aus dem Jahre 2008 wurde vollständig überarbeitet und dem Stand der Technik entsprechend aktualisiert. Dies betrifft sowohl die theoretischen Grundlagen als auch die normengerechte Bemessung von Tragwerken und Bauteilen. Alle Berechnungsbeispiele wurden an die Bemessungsregeln der europäischen Normen, d. h. an DIN EN 1993-1-1:2010 und DIN EN 1993-1-5:2010, angepasst. Darüber hinaus wurde der Umfang des Buches mit 150 Seiten beträchtlich erweitert. Die Erweiterungen betreffen im Wesentlichen Folgendes:

- In Kapitel 2 wird ein Zweigelenkrahmen als "baustatisches Lehrbeispiel" für den Nachweis ausreichender Tragfähigkeit eines stabilitätsgefährdeten Tragwerks aus Baustahl behandelt. Dabei geht es um die Wahl sinnvoller Nachweisverfahren, die Vorgehensweisen bei der Nachweisführung und um Hinweise auf wissenswerte Details und Hintergrundinformationen, die zum Verständnis des Tragverhaltens und der Berechnungsmethoden beitragen. Die bewusst breit angelegten Ausführungen gehen weit über die üblichen Nachweise für einen Zweigelenkrahmen hinaus, weil sie auch die fachliche Basis für andere Tragwerke bilden sollen.
- Kapitel 7 "Theorie II. Ordnung mit Ersatzimperfektionen" wurde im Hinblick auf die Art der Nachweisführung, den Ansatz der Ersatzimperfektionen und den Nachweis ausreichender Querschnittstragfähigkeit fast vollständig neu geschrieben. Darüber hinaus wurden weitere Berechnungsbeispiele ergänzt.
- In einem neuen Kapitel 11 werden Berechnungen nach der Fließzonentheorie und entsprechende Tragfähigkeitsnachweise behandelt. Damit kann das tatsächliche Tragverhalten sehr realitätsnah erfasst werden und die Ursachen für das Erreichen der Grenztragfähigkeit sind erkennbar, sodass das Verständnis für die Stabilität von Tragwerken gefördert wird. Vorteilhaft ist auch, dass bei vielen baupraktischen Anwendungsfällen höhere Tragfähigkeiten als mit allen anderen Verfahren nachgewiesen werden können.

Zurzeit liegt ein Norm-Entwurf DIN EN 1993-1-1:2020-08 vor. Abschnitt 1.9 enthält einige Erläuterungen und Kommentare, die Änderungen gegenüber der derzeit gültigen Norm betreffen. Mit der Einführung der Norm ist 2022 zu rechnen.

Aktuelle Hinweise zum Buch werden unter www.kindmann.de bekannt gegeben.

Dortmund, März 2021

R. Kindmann

Autor

Univ.-Prof. em. Dr.-Ing. Rolf Kindmann

studierte Bauingenieurwesen an der Ruhr-Universität Bochum. Von 1974 bis 1989 war er für sechs Jahre als Wissenschaftlicher Mitarbeiter an der Ruhr-Universität Bochum und für zehn Jahre in verschiedenen Positionen bei Thyssen Engineering tätig, zuletzt als Hauptabteilungsleiter aller technischen Büros. Im Jahre 1990 wurde er zum Ordinarius des Lehrstuhls für Stahl- und Verbundbau an der Ruhr-Universität Bochum ernannt und im Jahre 1991 gründete er die Ingenieursozietät Schürmann – Kindmann und Partner SKP in Dortmund, in der er als Beratender Ingenieur, Prüfingenieur für Baustatik (Fachrichtungen Metall- und Massivbau) sowie als Gutachter wirkte. Seit Beendigung seiner Tätigkeit als Gesellschafter ist Herr Prof. Kindmann der Ingenieursozietät SKP weiterhin eng verbunden.

Inhaltsverzeichnis

	Vorwort	V
	Autor	VI
1	Einleitung und Übersicht	1
1.1	Einführung	1
1.2	Grundsätzliches	4
1.3	Bezeichnungen und Annahmen	8
1.4	Grundlegende Beziehungen nach Theorie I. Ordnung	13
1.5	Stabilität und Theorie II. Ordnung	15
1.6	Buchinhalt (Übersicht)	18
1.7	Berechnungsbeispiele (Übersicht)	21
1.8	Downloads/Software	25
1.9	Hinweise zum Norm-Entwurf DIN EN 1993-1-1:2020-08	26
2	Tragverhalten, Berechnungs- und Nachweisverfahren	31
2.1	Lineares und nichtlineares Tragverhalten	31
2.2	Nachweisverfahren	33
2.3	Werkstoff Stahl	36
2.4	Teilsicherheitsbeiwerte γ_{M}	38
2.5	Ouerschnittsklassen	39
2.6	Definition der Stabilitätsfälle	43
2.7	Nachweise für stabilitätsgefährdete Tragwerke	47
2.8	Weitere Erläuterungen zum Verständnis	53
2.8.1	Geometrische Imperfektionen	54
2.8.2	Lineare und nichtlineare Tragwerksverformungen	55
2.8.3	Beschränkte Superposition bei Theorie II. Ordnung	56
2.8.4	Entlastung durch Zugnormalkräfte	56
2.8.5	Fließzonen	57
2.8.6	Eigenspannungen	58
2.8.7	Nachweisschnittgrößen	60
2.9	Berechnungen nach der Fließzonentheorie	61
2.10	Geometrisch nichtlineare Berechnungen	63
2.10.1	Hinweise zur Notwendigkeit	63
2.10.2	Berechnungsbeispiel zum Biegeknicken	63
2.10.3	Berechnungsbeispiel zum Biegedrillknicken	65
2.11	Baustatisches Lehrbeispiel Zweigelenkrahmen	67
2.11.1	Einleitung	67

VIII	Inha	altsverzeichnis
2 11 2	Mögliche und sinnvolle Nachweismethoden	68
2.11.3	Biegeknicken in der Rahmenebene	71
2.11.4	Biegedrillknicken und Biegeknicken um die schwache Achse	76
2.11.5	Rahmenecken – Konstruktion und Tragfähigkeit	81
2.11.6	Gabellager und Wölbbehinderungen	85
2.11.7	Alternative Rahmennachweise mit Abminderungsfaktoren	90
2.11.8	Grenztragfähigkeit des Zweigelenkrahmens	94
2.12	Genauigkeit der Nachweisverfahren	99
2.12.1	Vorbemerkungen	99
2.12.2	Nachweise mit Abminderungsfaktoren	100
2.12.3	Ersatzimperfektionsverfahren	104
2.12.4	Fließzonentheorie	105
3	Nachweise zum Riegeknicken mit Ahminderungsfaktoren v	v 106
2 1	The weise zum Diegeknieken mit Abinniterungstaktoren j	100
5.1 2.2	Ubersicht	100
5.2 2.2	Druckstabe – Abminderungsfaktoren χ	108
5.5 2.4	Diuckstabe init Diegeniomenten – Diegeknicken	117
5.4 2.5	Knickschler of nach DIN 4114	121
5.5	Knickzanien () nach DIN 4114	120
4	Stabilitätsproblem Biegeknicken	128
4.1	Ziele	128
4.2	Stabiles Gleichgewicht	129
4.3	Knickbedingungen	130
4.4	Eulerfälle I und IV	134
4.5	Knickbiegelinien und Knicklängen	137
4.6	Euler'sche Knickspannung	140
4.7	Hinweise zur Berechnung von N _{cr}	142
4.8	Ersatz von Tragwerksteilen durch Federn	147
4.9	Druckstäbe mit Federn an den Enden	151
4.10	Lösen von Knickbedingungen	159
4.11	Druckstab mit Wegfeder in Feldmitte	162
4.12	Elastisch gebettete Druckstäbe	164
4.13	Poltreue Normalkräfte/Pendelstützen	172
4.14	Knicklängen für ausgewählte Systeme	181

Inhaltsverzeichnis		IX
5	Nachweise zum Biegedrillknicken mit Abminderungsfaktoren	187
5.1	Übersicht	187
5.2	Planmäßige Biegemomente – Abminderungsfaktoren	189
5.3	Planmäßige Biegemomente und Druckkräfte	203
5.4	Allgemeines Nachweisverfahren für Bauteile	210
5.5	Nachweis von Druckgurten als Druckstab	213
5.6	Hinweise zur Nachweisführung	217
5.6.1	Prinzipielle Vorgehensweise	217
5.6.2	Stäbe ohne Biegedrillknickgefahr	217
5.6.3	Maßgebende Nachweisstellen	219
5.6.4	Aufteilung in Teilsysteme	221
6	Stabilitätsproblem Biegedrillknicken	223
61	Übersicht	223
6.2	Berechnung von M	225
6.3	Aufteilung in Teilsysteme	228
6.4	Träger mit Randmomenten	230
6.5	Kragträger	235
6.6	Träger mit einfachsymmetrischen I-Querschnitten	237
6.7	Seitlich abgestützte Träger	239
6.8	Drill- und Biegedrillknicken bei Druckstäben	244
6.9	Herleitung von Berechnungsformeln	248
7	Theorie II. Ordnung mit Ersatzimperfektionen	254
7.1	Grundsätzliches	254
7.2	Nachweisführung	256
7.3	Ersatzimperfektionen	257
7.3.1	Grundlagen	257
7.3.2	Ersatzimperfektionen für Biegeknicken	257
7.3.3	Ersatzimperfektionen für Biegedrillknicken	260
7.3.4	Imperfektionen zur Berechnung aussteifender Systeme	261
7.3.5	Hinweise zum Ansatz der Ersatzimperfektionen	262
7.4	Schnittgrößen nach Theorie II. Ordnung	266
7.4.1	Berechnungen	266
7.4.2	Erläuterungen zum Verständnis	267
7.5	Nachweis ausreichender Querschnittstragfähigkeit	270
7.5.1	Allgemeines	270
7.5.2	Nachweise mit Normal- und Schubspannungen	271
7.5.3	Ermittlung von Spannungen (Elastizitätstheorie)	273
7.5.4	Lineare Interaktionsbeziehungen	276

X	Inh	altsverzeichnis
7.5.5	Plastische Ouerschnittstragfähigkeit – I-Ouerschnitte	278
7.5.6	Plastische Querschnittstragfähigkeit – Weitere Ouerschnitte	288
7.6	Berechnungsbeispiele	290
7.6.1	Vorbemerkungen	290
7.6.2	Stütze HEB 200	290
7.6.3	Stütze HEA 140 mit planmäßiger Biegung	291
7.6.4	Am Fußpunkt eingespannte Stütze IPE 300	293
7.6.5	Einfeldträger IPE 400 mit planmäßiger Biegung	295
7.6.6	Zweifeldträger IPE 400 mit planmäßiger Biegung	298
7.6.7	Träger HEB 220 mit planmäßiger Torsion	301
7.6.8	Träger mit einfachsymmetrischem I-Querschnitt	302
7.6.9	Träger aus einem UPE-Profil	304
7.6.10	Kragträger mit planmäßiger Biegung	307
8	Theorie II. Ordnung für Biegung mit Normalkraft	310
8.1	Problemstellung und Ziele	310
8.2	Grundlegende Zusammenhänge	312
8.3	Prinzip der virtuellen Arbeit	316
8.4	Differentialgleichungen und Randbedingungen	321
8.5	Lösung der Differentialgleichungen	324
8.6	Weggrößenverfahren	333
8.7	Vergrößerungsfaktoren	339
8.8	Iterative Berechnungen	353
8.9	Tragverhalten nach Theorie II. Ordnung	355
8.9.1	Ziele	355
8.9.2	Biegebeanspruchte Stäbe mit Druck- oder Zugnormalkräften	355
8.9.3	Druckstab mit Randmomenten	357
8.9.4	Maßgebende Bemessungspunkte und Laststellungen	359
8.9.5	Seitlich verschiebliche Rahmen	361
8.9.6	Seitlich unverschiebliche Rahmen	364
8.9.7	Erhöhte Biegemomente in druckkraftfreien Teilen	368
8.10	Ersatzbelastungsverfahren für verschiebliche Rahmen	369
9	Theorie II. Ordnung für beliebige Beanspruchungen	380
9.1	Vorbemerkungen	380
9.2	Spannungen und Dehnungen	380
9.3	Verschiebungen u, v und w	383
9.4	Virtuelle Arbeit	388
9.5	Differentialgleichungen und Randbedingungen	394
9.6	Schnittgrößen	396

Inhaltsve	Inhaltsverzeichnis	
97	Berechnungsablauf und Lösungsmethoden	400
9.8	Hinweise zum Tragverhalten	403
981	Übersicht	403
9.8.2	Nachweis zum Biegedrillknicken mit Formeln	403
9.8.3	Einfluss der Ouerschnittsform	406
9.8.4	Biegedrillknicken mit planmäßiger Torsion	408
9.8.5	Realistische Lastangriffspunkte	409
9.8.6	Einfluss von Trägerüberständen	411
10	Aussteifung und Stabilisierung	412
10.1	Aussteifende Bauteile	412
10.2	Aussteifung von Gebäuden	413
10.3	Stabilisierung durch Abstützungen	417
10.3.1	Halle mit aussteifenden Verbänden	417
10.3.2	Ableitung planmäßiger Horizontallasten	418
10.3.3	Ableitung von Abtriebskräften	420
10.3.4	Abstützende Bauteile	420
10.3.5	Schubfelder	421
10.4	Stabilisierung durch Behinderung der Verdrehungen	424
10.5	Stabilisierung durch konstruktive Details	429
10.6	Ausführungsbeispiel Sporthalle	431
10.6.1	Konstruktion	431
10.6.2	Stabilität und Tragfähigkeit der inneren Dachbinder	432
10.6.3	Nachweis des Schubfeldes	435
10.6.4	Tragfähigkeit der Dachbinder in den Giebelwänden	437
10.7	Ausführungsbeispiel eingeschossige Halle	438
10.7.1	Vorbemerkungen	438
10.7.2	Zweigelenkrahmen in der Rahmenebene	438
10.7.3	Tragfähigkeit der Rahmenstiele	444
10.7.4	Tragfähigkeit der Rahmenriegel	446
10.7.5	Dachverbände	454
10.7.6	Wandverbände	458
11	Fließzonentheorie – Berechnungen, Tragverhalten, Nachweise	459
11.1	Finführung	459

11.1	Einführung	459
11.1.1	Vorbemerkungen	459
11.1.2	Grundlegende Einführungsbeispiele und Erläuterungen	460
11.1.3	Hinweise zu geometrisch nichtlinearen Berechnungen	462
11.2	Auswirkungen von Fließzonen auf die Tragfähigkeit	462
11.2.1	Vorbemerkungen	462

11.2.2	Tragfähigkeit nach Theorie I. Ordnung – Fließzonen	463
11.2.3	Biegeknicken um die starke Achse – Tragverhalten	466
11.2.4	Biegeknicken um die schwache Achse – Tragverhalten	467
11.2.5	Biegedrillknicken– Tragverhalten	468
11.2.6	Biegung und Torsion eines Versuchsträgers IPE 200	470
11.2.7	Zweiachsig außermittig belastete Versuchsstütze HEB 200	473
11.2.8	Biegung und Torsion eines Versuchsträgers UPE 200	478
11.3	Berechnungen mit dem Programm FE-STAB-FZ	480
11.3.1	Anwendungsbereiche	480
11.3.2	Fließzonentheorie auf Grundlage der DIN EN 1993	481
11.3.3	Imperfektionen	483
11.3.4	Werkstoffgesetz	487
11.3.5	Querschnittskennwerte und Ermittlung von Fließzonen	487
11.3.6	Einfluss von Schubspannungen	492
11.3.7	Inkrementell-iterative Systemberechnung	492
11.3.8	Beurteilung der Ergebnisse/Kontrollen	495
11.4	Berechnungsbeispiele	496
11.4.1	Vorbemerkungen	496
11.4.2	Stütze HEA 140 mit Druckkraft und planmäßiger Biegung	497
11.4.3	Einfeldträger IPE 400 mit planmäßiger Biegung	499
11.4.4	Zweifeldträger IPE 400 mit planmäßiger Biegung	500
11.4.5	Einfeldträger IPE 300 mit Druckkraft und planmäßiger Biegung	503
11.4.6	Stütze IPE 300 mit Einspannung am Stützenfuß	505
11.4.7	Zweifeldrige Giebelwandeckstütze	507
11.4.8	Zweifeldriger Kranbahnträger HEB 300	509
12	Stabilitätsproblem Plattenbeulen und Beulnachweise	513
12.1	Problemstellung	513
12.1	Grundlagen für Beulnachweise	516
12.2.1	Vergleich mit dem Biegeknicken	516
12.2.2	Beulfelder in Tragwerken	516
12.2.3	Linearisierte Beultheorie	519
12.3	Plattenbeulnachweise nach DIN EN 1993-1-5	522
12.4	Rechteckplatten ohne Steifen	529
12.4.1	Ideale Beulspannungen	529
12.4.2	Konstante Randspannungen σ_{s}	531
12.4.3	Linear veränderliche Randspannungen σ_{x}	533
12.4.4	Schubspannungen	535
12.4.5	Beulfelder mit unterschiedlichen Randbedingungen	536
12.5	Ausgesteifte Beulfelder	538
12.5.1	Steifentypen	538

XII

Inhaltsverzeichnis		XIII
12.5.2	Steifenanordnung	538
12.5.3	Beulwerte für ausgesteifte Beulfelder	540
12.6	Wichtige Konstruktionsdetails	545
12.7	Überkritisches Tragverhalten	547
12.8	Berechnungsbeispiele zum Plattenbeulen	550
12.8.1	Vorbemerkungen	550
12.8.2	Geschweißter Träger mit I-Querschnitt	550
12.8.3	Geschweißter Hohlkastenträger	552
12.8.4	Bodenblech einer Geh- und Radwegbrücke	555
12.8.5	Stegblech eines Vollwandträgers mit Längssteifen	558
Literatu	rverzeichnis	568

Stich	worty	verzei	chnis
C'ului			CHINN

574

ausgegangen, dass EDV-Programme für die numerische Lösung des Stabilitätsproblems zur Verfügung stehen, beispielsweise FE-STAB, s. Abschnitt 1.8.

4.2 Stabiles Gleichgewicht

Baustatische Systeme müssen stabiles Gleichgewicht aufweisen. Gemäß Tabelle 4.1 unterscheidet man drei Zustände: stabiles, indifferentes und labiles Gleichgewicht.

Wenn man eine Kugel in eine Schale legt und sie anstößt, so kehrt sie zum tiefsten Punkt zurück und man spricht von einem stabilen Gleichgewichtszustand. Bei einem Druckstab bedeutet dies, dass N < N_{cr} ist und dass der Stab nach einer erzwungenen seitlichen Auslenkung in die Ausgangslage zurückkehrt.

Indifferentes Gleichgewicht wird häufig mit einer Kugel auf einer Ebene erklärt. Bei einem leichten Stoß rollt sie zur Seite und es ist unklar, wo sie liegen bleibt. Beim Druckstab ist $N = N_{cr}$ und der Stab kann in der Ausgangslage verbleiben oder in eine ausgelenkte Lage ausweichen: Seine Lage ist indifferent.

Wenn man eine Kugel vorsichtig auf einen Ball legt und sie anstößt, rollt sie herunter, d. h. sie befand sich vorher in einer labilen Gleichgewichtslage. Beim Druckstab ist $N > N_{cr}$ und der Stab kehrt nach einer erzwungenen Auslenkung nicht in die Ausgangslage zurück, d. h. er knickt aus.

	Gleichgewicht					
	stabil	indifferent	labil			
Kugel auf Flächen	Kugel Schale	(_) →→●→ (_) ////////////////////////////////////	Ball			
Druckstab	N < N _{cr}	N = N _{cr}				
Potentielle Energie Π	Π = Min. δΠ = 0 δ2Π > 0	Π = Min. δΠ = 0 δ2Π = 0	$\Pi = Min.$ $\delta \Pi = 0$ $\delta^2 \Pi < 0$			

Tabelle 4.1 Stabiles, indifferentes und labiles Gleichgewicht

Zur Formulierung von Eigenwertproblemen, d. h. der Knickbedingungen, wird häufig von der potentiellen Energie Π oder der virtuellen Arbeit δW ausgegangen. Die entsprechenden Bedingungen für stabiles, indifferentes und labiles Gleichgewicht sind in Tabelle 4.1 zusammengestellt. Bild 4.2 zeigt dazu erläuternd den Zusammenhang mit Kurvendiskussionen und der Bestimmung von Maxima, Minima und Wendepunkten.

4.3 Knickbedingungen

Zur Lösung des Eigenwertproblems Biegeknicken gibt es verschiedene Methoden, mit denen ideale Verzweigungslasten und Knickbiegelinien bestimmt werden. Allen Methoden gemeinsam ist, dass dabei **homogene** Bestimmungsgleichungen (einzelne Gleichungen, Gleichungssysteme, Differentialgleichungen) gelöst werden.

Als Einführungsbeispiel wird die Stütze in Bild 4.3 betrachtet. Sie ist unten gelenkig gelagert und wird im Feldbereich durch eine Wegfeder C_w seitlich abgestützt. Vereinbarungsgemäß soll die Biegesteifigkeit sehr groß sein $(E \cdot I \rightarrow \infty)$, sodass sich die Stütze nicht verkrümmen, sondern nur schräg stellen kann. Da Knickbedingungen am verformten System formuliert werden, wird für die Stütze eine Schrägstellung angenommen und die virtuellen Verschiebungen in den Punkten b und c mit δw_b und δw_c bezeichnet. Wie allgemein üblich, wird die Knickbedingung am schwach verformten System aufgestellt, sodass die Veränderung der Höhenlage der Punkte b und c nicht berücksichtigt wird, s. auch Bild 8.2. Bei der Stütze entsteht durch das Zusammendrücken der Feder eine Reaktionskraft:

$$\mathbf{F}_{\mathbf{z},\mathbf{C}} = \mathbf{C}_{\mathbf{w}} \cdot \delta \mathbf{w}_{\mathbf{b}} \tag{4.2}$$

Man kann nun das Momentengleichgewicht um den Punkt a bilden und erhält die in Bild 4.3 angegebene Gleichgewichtsbeziehung. Mit dem Strahlensatz kann die virtuelle Verschiebung δw_c durch δw_b ersetzt werden und es ergibt sich folgende **Knickbedingung**:

$$\left(C_{w} \cdot L_{1} - F_{cr,x} \cdot \frac{L_{1} + L_{2}}{L_{1}}\right) \cdot \delta w_{b} = 0$$

$$(4.3)$$

Bei diesem sehr einfachen System besteht die Knickbedingung aus **einer** Gleichung, weil die Knickbiegelinie durch eine einzige Verformungsgröße beschrieben werden kann. Gl. (4.3) ist gleich null, wenn **ein** Faktor gleich null ist. Da $\delta w_b = 0$ eine triviale Lösung ist, steht in der runden Klammer die Knickbedingung. Wegen N = F_x und N_{cr} = F_{cr,x} erhält man als ideale Verzweigungslast:

$$N_{cr} = F_{cr,x} = \frac{C_w \cdot L_1^2}{L_1 + L_2}$$
(4.4)

Im mathematischen Sinne ist N_{cr} der erste Eigenwert der Stütze und die Schrägstellung in Bild 4.3 die zugehörige Eigenform. Höhere Eigenwerte gibt es bei diesem Beispiel nicht, weil $E \cdot I \rightarrow \infty$ angenommen wurde.

Homogene Gleichungssysteme

In der Regel entstehen bei Stabilitätsuntersuchungen mehrere Gleichungen und bei komplexen Systemen häufig Gleichungssysteme mit vielen unbekannten Verformungsgrößen. Die Gleichungssysteme sind stets homogen (rechte Seite gleich null), sodass die unbekannten Verformungsgrößen nicht bestimmt werden können. Das folgende Beispiel zeigt beispielhaft ein 3×3-Gleichungssystem, wie es sich häufig bei Stabilitätsuntersuchungen ergibt:

In Gl. (4.5) ist α_{cr} der Verzweigungslastfaktor, mit dem die Drucknormalkräfte, die die Stabilitätsgefahr verursachen, zu multiplizieren sind. Der Vergleich mit der Stütze

in Bild 4.3, bei der nur **eine** Gleichung auftritt, zeigt, dass mit $k_{11} = C_w \cdot L_1$ die Steifigkeit des Systems erfasst wird. Wegen

$$\mathbf{F}_{cr,x} = \alpha_{cr} \cdot \mathbf{F}_{x} \quad \text{und} \quad \mathbf{N}_{cr} = \alpha_{cr} \cdot \mathbf{N} \tag{4.6}$$

ist $g_{11} = N \cdot (L_1 + L_2)/L_1$, was bei der Methode der finiten Elemente (FEM) geometrische Steifigkeit genannt wird. Sofern das Stabilitätsproblem für ein System mit wenigen Gleichungen formuliert werden kann, verwendet man zur Bestimmung von α_{cr} in der Regel die **Bedingung "Determinante gleich null"**. Das bedeutet, dass für ein homogenes Gleichungssystem (in Matrizenschreibweise)

$$(\underline{\mathbf{K}} - \alpha_{\rm cr} \cdot \underline{\mathbf{G}}) \cdot \underline{\mathbf{v}} = \underline{\mathbf{0}} \quad \text{oder} \quad \underline{\mathbf{F}}(\alpha_{\rm cr}) \cdot \underline{\mathbf{v}} = \underline{\mathbf{0}} \tag{4.7}$$

die Bedingung

$$\det (\underline{\mathbf{K}} - \alpha_{\rm cr} \cdot \underline{\mathbf{G}}) = 0 \quad \text{oder} \quad \det [\underline{\mathbf{F}}(\alpha_{\rm cr})] = 0 \tag{4.8}$$

verwendet wird. Bei der Untersuchung einfacher Systeme treten häufig **zwei** Gleichungen auf, sodass die Determinante wie folgt berechnet werden kann:

$$\det \left(\underline{K} - \alpha_{cr} \cdot \underline{G}\right) = (k_{11} - \alpha_{cr} \cdot g_{11}) \cdot (k_{22} - \alpha_{cr} \cdot g_{22}) - (k_{12} - \alpha_{cr} \cdot g_{12}) \cdot (k_{21} - \alpha_{cr} \cdot g_{21}) = 0$$
(4.9)

Die Knickbedingung in Gl. (4.9) ist eine quadratische Gleichung für α_{cr} , die formelmäßig gelöst werden kann. Für symmetrische Gleichungssysteme mit $k_{21} = k_{12}$ und $g_{21} = g_{12}$ erhält man:

$$\alpha_{cr} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4}} - q$$
(4.10)

mit: $p = \frac{2 k_{12} \cdot g_{12} - k_{11} \cdot g_{22} - k_{22} \cdot g_{11}}{g_{11} \cdot g_{22} - g_{12}^2}$

 $q = \frac{k_{11} \cdot k_{22} - k_{12}^2}{g_{11} \cdot g_{22} - g_{12}^2}$

Eine Lösungsstruktur wie in Gl. (4.10) mit dem Wurzelterm ist für viele Näherungslösungen in der Literatur typisch.

Sofern drei oder mehr Gleichungen auftreten, ist eine direkte Lösung wie mit den Gln. (4.9) und (4.10) nicht mehr möglich. Man kann zwar eine dreireihige Determinante nach der Regel von Sarrus berechnen, erhält aber eine lange Formel, die in der Regel nur iterativ gelöst werden kann, weil α_{cr} bis zur dritten Potenz auftritt. Sinnvoller ist es häufig, mithilfe von elementaren Umformungen das Gleichungssystem auf ein 2×2-System zu reduzieren. Man spricht in diesem Zusammenhang auch von der "Entwicklung" nach den Elementen einer Zeile oder einer Spalte und benutzt die aus der Mathematik bekannte "Entwicklungsformel". Erfolgversprechend im Hinblick auf eine übersichtliche Lösung ist diese Vorgehensweise aber nur, wenn einige Elemente k_{ij} und g_{ij} gleich null sind. Abschnitt 4.4 enthält dazu mit dem Eulerfall II ein Beispiel.

4.3 Knickbedingungen

Eigenwerte von baustatischen Systemen werden jedoch auch mit einer Methode berechnet, die überwiegend bei der Lösung von Stabilitätsproblemen zum Einsatz kommt. Dabei werden für die Eigenformen (Knickbiegelinien) sinnvolle Näherungsfunktionen gewählt und in die virtuelle Arbeit eingesetzt. Man erhält dann ein homogenes Gleichungssystem, das Gl. (4.7) entspricht und mit dem der Eigenwert näherungsweise ermittelt werden kann. Diese Vorgehensweise eignet sich insbesondere für die Herleitung von Berechnungsformeln und wird in Abschnitt 6.7 zur Lösung von Biegedrillknickproblemen ausführlich gezeigt.

Homogene Differentialgleichungen

Für die Stabilitätsuntersuchung einfacher baustatischer Systeme werden häufig die Differentialgleichungen herangezogen. Sie werden insbesondere für Stäbe und Stababschnitte mit gleich bleibendem Querschnitt ($E \cdot I = konst.$) und konstanter Drucknormalkraft gemäß Bild 4.4 verwendet.

Bild 4.4 Stäbe und Stababschnitte mit E · I und N = konst.

Gemäß Abschnitt 8.5 lautet die homogene Differentialgleichung

$$\mathbf{w}^{\prime\prime\prime\prime} + \frac{\varepsilon^2}{L^2} \cdot \mathbf{w}^{\prime\prime} = 0 \tag{4.11}$$

und ihre Lösung

$$w(x) = A \cdot \sin \frac{\varepsilon \cdot x}{L} + B \cdot \cos \frac{\varepsilon \cdot x}{L} + C \cdot x + D$$
(4.12)

In Gl. (4.12) treten mit A, B, C und D vier unbekannte Größen auf und man benötigt daher vier Randbedingungen. Die Unbekannten kann man jedoch nicht bestimmen, weil ein **homogenes** 4×4-Gleichungssystem entsteht. Es dient zur Ermittlung von ε_{cr} , wobei, wie oben beschrieben, die Bedingung "**Determinante gleich null**" verwendet wird. Wegen

$$\varepsilon = L \cdot \sqrt{\frac{N}{E \cdot I}} \tag{4.13}$$

gilt folgender Zusammenhang mit N_{cr} und L_{cr}:

$$N_{\rm cr} = \frac{\varepsilon_{\rm cr}^2 \cdot \mathbf{E} \cdot \mathbf{I}}{L^2} \tag{4.14}$$

$$L_{cr} = \frac{\pi}{\varepsilon_{cr}} \cdot L \tag{4.15}$$

In Abschnitt 4.4 wird die Eigenwertuntersuchung am Beispiel des Eulerfalls II unter Verwendung der DGL durchgeführt.

Lösung von Eigenwertproblemen mit der FEM

Es existieren zahlreiche mathematische Methoden zur Lösung von Eigenwertproblemen. Bei den Stabilitätsproblemen des Bauwesens wird überwiegend die Methode der finiten Elemente eingesetzt. Als Ausgangspunkt wird dabei die virtuelle Arbeit oder ein vergleichbares Energieprinzip verwendet und ein homogenes Gleichungssystem aufgestellt, s. Gl. (4.7). Diese Thematik wird in [29] ausführlich für das Biegeknicken und Biegedrillknicken von Stabtragwerken sowie für das Plattenbeulen behandelt. Im Vordergrund stehen dabei zwei computerorientierte Lösungsverfahren:

- das **Matrizenzerlegungsverfahren**, bei dem die Bedingung "Determinante gleich null" zur Berechnung der Eigenwerte verwendet wird
- die **inverse Vektoriteration** mit iterativer Ermittlung der Eigenformen und Eigenwerte

4.4 Eulerfälle I bis IV

Standardsysteme für das Biegeknicken sind Stützen mit gleich bleibendem Querschnitt und konstanter Drucknormalkraft. Tabelle 4.2 zeigt die bekannten vier Eulerfälle und enthält auch die Randbedingungen an den Stabenden, da die Stabilitätsuntersuchungen mit der DGL nach Gl. (4.11) und ihrer Lösung nach Gl. (4.12) erfolgen.

Eulerfall	I	II	III	IV
Baustatisches System (E · I = konst., Länge L)				Z
Randbedingungen				
- oben	$\hat{V} = M = 0$	w = M = 0	w = M = 0	$w=w^{\prime}=0$
- unten	w = w' = 0	w = M = 0	w = w' = 0	$w=w^{\prime}=0$

 Tabelle 4.2
 Eulerfälle I bis IV mit Randbedingungen

Anmerkungen: In der Baupraxis kommen einzelne Kragträger wie in Bild 7.10 selten vor. Häufig liegen mehrere Kragträger nebeneinander, die durch Verbände ausgesteift werden. Wie in Bild 6.12 dargestellt, werden die Kragträgerenden seitlich unverschieblich abgestützt, sodass dort die Verschiebung v der Eigenform gleich null ist und sich daher die Frage nach einer Schrägstellung als Imperfektion nicht stellt. In Abschnitt 7.6.10 wird die Tragfähigkeit von Kragträgern unter Berücksichtigung des Biegedrillknickens untersucht.

7.4 Schnittgrößen nach Theorie II. Ordnung

7.4.1 Berechnungen

Beim Ersatzimperfektionsverfahren (EIV) müssen die Schnittgrößen unter Berücksichtigung der geometrischen Ersatzimperfektionen nach Theorie II. Ordnung ermittelt werden. Dies ist bei der Nachweisführung gemäß Abschnitt 7.2 die anspruchsvollste Aufgabenstellung. Aus didaktischen Gründen werden die Berechnungsgrundlagen in zwei Kapiteln behandelt:

- Kapitel 8: Theorie II. Ordnung für Biegung mit Normalkraft
- Kapitel 9: Theorie II. Ordnung für beliebige Beanspruchungen

In Kapitel 8 steht das Biegeknicken, d. h. die Theorie II. Ordnung aufgrund von Drucknormalkräften, im Vordergrund. Der Vollständigkeit halber wird auch der Einfluss von Zugnormalkräften behandelt.

Kapitel 9 schließt an Kapitel 8 an und enthält die Erweiterung für die Schnittgrößenermittlung nach Theorie II. Ordnung bei beliebigen Beanspruchungen. Im Hinblick auf die Bedeutung für die Baupraxis liegen die Schwerpunkte bei den folgenden Beanspruchungsfällen:

- Biegedrillknicken bei planmäßig einachsiger Biegung
- Biegedrillknicken bei planmäßiger Biegung und Torsion
- Biegeknicken bei planmäßig zweiachsiger Biegung mit Druckkraft

Die Abschnitte 7.6, 8.5 bis 8.11, 9.8 sowie 10.6 und 10.7 enthalten Berechnungsbeispiele, bei denen die Schnittgrößen nach Theorie II. Ordnung ermittelt werden.

Bei Berechnungen nach Theorie II. Ordnung mit EDV-Programmen, wie z. B. mit FE-STAB, wird die Systemberechnung in der Regel **zweimal** durchgeführt. Zunächst erfolgt eine Berechnung nach Theorie I. Ordnung, sodass damit die Schnittgrößen nach Theorie I. Ordnung bekannt sind. Diese Schnittgrößen werden bei der daran anschließenden Berechnung nach Theorie II. Ordnung in die geometrische Steifigkeitsmatrix eingesetzt, s. Bild 8.17 und Tabelle 9.2.

7.4.2 Erläuterungen zum Verständnis

Der prinzipielle Einfluss der Theorie II. Ordnung auf die Schnittgrößen und Verformungen wird mithilfe von Bild 7.11 für Biegeknicken erläutert. In Bild 7.11a ist die Stütze nur durch F_x belastet und es tritt eine konstante Druckkraft N = F_x auf. Bei der Belastung durch F_z, Bild 7.11b, entsteht ein linear veränderliches Biegemoment und die Verschiebungen w(x) können problemlos mit den bekannten Methoden der Baustatik bestimmt werden. Wenn nun wie in Bild 7.11c F_x und F_z gemeinsam wirken, so ergibt sich unmittelbar aus der Anschauung, dass die horizontalen Verschiebungen in Bild 7.11b durch F_x größer werden. Ursache dafür ist der außermittige Lastangriff von F_x bezüglich der unverformten Stabachse. Dieser Effekt führt auch zu einer Veränderung der Biegemomente M(x) und an der Einspannstelle ist $M_a = -F_z \cdot L - F_x \cdot w_b$. Der Vergleich mit $M_a = -F_z \cdot L$ in Bild 7.11b zeigt, dass der erste Term zur linearen Stabtheorie gehört. Der zweite Term erfasst den Einfluss der Theorie II. Ordnung, d. h. des Gleichgewichts am verformten System. Wie man leicht sieht, können die Verschiebungen w(x), insbesondere w_b , infolge F_x und F_z in Bild 7.11c nicht unmittelbar berechnet werden. Verallgemeinert ergibt sich aus Bild 7.11 folgende Problemstellung: Wie können Verformungen und Schnittgrößen nach Theorie II. Ordnung bestimmt werden?

Bild 7.11 Prinzipieller Einfluss der Theorie II. Ordnung

Definitionsgemäß wird bei Theorie II. Ordnung das Gleichgewicht am **verformten** System erfasst. Gegenüber der linearen Theorie (Gleichgewicht am **un**verformten System) verändern sich die Verformungen und Schnittgrößen häufig beträchtlich. Als Beispiel zum Verständnis wird die Stütze in Bild 7.12 betrachtet und es werden Verformungen und Biegemomente **iterativ** berechnet.

Für die eingespannte Stütze in Bild 7.12 werden L = 5 m, $I = 600 \text{ cm}^4$, P = 3,9 kN und N = 35 kN angenommen. Nach Theorie I. Ordnung erhält man:

$$M_{a}^{I} = -P \cdot L = -1950 \text{ kNcm und } w_{b}^{I} = \frac{P \cdot L^{3}}{3 \cdot E \cdot I} = 12,90 \text{ cm}$$

Bild 7.12 Iterative Berechnung für eine eingespannte Stütze

Den Einfluss der Theorie II. Ordnung kann man mit der in Bild 7.12 dargestellten Vorgehensweise ingenieurmäßig verfolgen und durch iterative Berechnungsschritte erfassen. Dazu wird im 1. Iterationsschritt das verformte System betrachtet, das sich aufgrund der Verformungen $w_1(x) = w^I(x)$ ergibt. Mit der Druckkraft N führen die Verformungen zu einem zusätzlichen Biegemoment $\Delta M_1(x) = -N \cdot [w_{b,1} - w_1(x)]$. Näherungsweise kann der nichtlineare Biegemomentenverlauf durch einen dreiecksförmigen ersetzt werden. Da dies der gleiche Verlauf wie beim Biegemoment nach Theorie I. Ordnung ist, ergibt sich die zusätzliche Verschiebung mit dem Arbeitssatz:

$$\Delta \mathbf{w}_{\mathbf{b},1} = \frac{\mathbf{N} \cdot \mathbf{w}_{\mathbf{b},1} \cdot \mathbf{L}^2}{\mathbf{3} \cdot \mathbf{E} \cdot \mathbf{I}}$$

Aufgrund der zusätzlichen Verschiebung wird sie insgesamt größer und es ergibt sich eine weitere Biegemomentenbeanspruchung. Es kann daher die folgende iterative Berechnung durchgeführt werden:

$$\begin{split} & w_1 = 12,90 \text{ cm} & \Delta M_1 = -N \cdot w_1 = -451 \text{ kNcm} \\ & w_2 = w_1 + w_1 \cdot \frac{451}{1950} = 15,88 \text{ cm} & \Delta M_2 = -N \cdot w_2 = -556 \text{ kNcm} \\ & w_3 = w_1 + w_1 \cdot \frac{556}{1950} = 16,58 \text{ cm} & \Delta M_3 = -N \cdot w_3 = -580 \text{ kNcm} \\ & w_4 = w_1 + w_1 \cdot \frac{580}{1950} = 16,74 \text{ cm} & \Delta M_4 = -N \cdot w_4 = -586 \text{ kNcm} \end{split}$$

Wie man sieht, werden die Unterschiede bei w und ΔM immer kleiner, sodass die Iteration gut konvergiert. Als Ergebnis der Iteration kann man aus den Werten 12,90, 15,88, 16,58 und 16,74 cm als Verschiebung nach Theorie II. Ordnung w = 17,0 cm schätzen. Das maximale Biegemoment ergibt sich dann zu:

$$M_{\rm b} = -P \cdot L - N \cdot w = -1950 - 595 = -2545 \text{ kNcm}$$

Da anstelle der "bauchigen" Momentenlinie infolge N und $w_i(x)$ näherungsweise eine dreiecksförmige angenommen worden ist, sind die mit der Iteration ermittelten Verschiebungen etwas zu klein. Verglichen mit der genauen Lösung sind das Einspannmoment 1,2 % und die Verschiebung am Stützenkopf 4,9 % zu klein. Da die Näherung aus der Annahme für den Verlauf des Biegemomentes infolge N und w(x) herrührt, kann die Genauigkeit verbessert werden, indem man die Stütze in mehrere Abschnitte unterteilt und damit den nichtlinearen Momentenverlauf durch einen polygonartigen annähert, s. Abschnitt 8.8 "Iterative Berechnungen". Die Berechnung ist natürlich entsprechend aufwändig, sodass der Einsatz eines Tabellenkalkulationsprogramms zweckmäßig ist.

Alternativ kann man auch ein Stabwerksprogramm verwenden und die Stütze wie in Bild 7.12 rechts in fünf Stabelemente unterteilen. Dabei werden alle Berechnungen nach Theorie I. Ordnung durchgeführt und wie oben die iterativ ermittelten Verschiebungen bei der Eingabe der Knotenkoordinaten des Systems berücksichtigt. Bild 7.12 rechts zeigt die verformte Stütze aus fünf geraden Stabelementen. Mit der beschriebenen Methode (iterative Berechnung nach Theorie I. Ordnung) hat man früher, weil entsprechende Programme nicht vorhanden waren, häufig den Einfluss der Theorie II. Ordnung erfasst. Dabei wurden nicht nur einfache Standardsysteme untersucht, sondern auch komplexe baustatische Systeme wie z. B. Kesselgerüste. Heutzutage werden natürlich direkt Berechnungen nach Theorie II. Ordnung mit entsprechenden EDV-Programmen durchgeführt.

Anmerkungen: Mit Tabelle 8.3 und der Stabkennzahl $\varepsilon = 0,833$ erhält man als genaue Lösung:

$$w_{b} = \frac{P \cdot L^{3}}{E \cdot I \cdot \varepsilon^{3}} \cdot (\tan \varepsilon - \varepsilon) = 17,88 \text{ cm}$$
$$M_{a} = -P \cdot L \cdot \frac{\tan \varepsilon}{\varepsilon} = -2575 \text{ kNcm}$$

Dieses Ergebnis ergibt sich fast identisch mithilfe von Tabelle 8.4 unter Verwendung des Vergrößerungsfaktors:

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I}{4 \cdot L^2} = 124,4 \text{ kN} \rightarrow N / N_{cr} = 0,281$$
$$w_b \approx \frac{P \cdot L^3}{3 \cdot E \cdot I} \cdot \frac{1 - 0,014 \cdot N / N_{cr}}{1 - N / N_{cr}} = 17,87 \text{ cm}$$
$$M_a = -P \cdot L \cdot \frac{1 - 0,18 \cdot N / N_{cr}}{1 - N / N_{cr}} = -2575 \text{ kNcm}$$

7.5 Nachweis ausreichender Querschnittstragfähigkeit

7.5.1 Allgemeines

Im Rahmen der Stabtheorie können Querschnitte durch bis zu **acht Schnittgrößen** beansprucht werden. Gemäß Bild 7.13 sind das die Schnittkräfte N, V_y und V_z sowie die Schnittmomente M_y, M_z und M_x. Darüber hinaus tritt bei der Wölbkrafttorsion ein Wölbbimoment M_o auf und das Torsionsmoment besteht aus dem primären und dem sekundären Torsionsmoment (M_x = M_{xp} + M_{xs}). Die Schnittgrößen wirken gemäß Bild 7.13 links teilweise im Schwerpunkt S oder im Schubmittelpunkt M. Bei doppeltsymmetrischen Querschnitten ist y_M = z_M = 0, sodass alle Schnittgrößen in einem Punkt wirken. Stäbe aus wölbfreien Querschnitten, wie z. B. aus kreisförmigen und quadratischen Hohlprofilen, tragen Torsionsbeanspruchungen nur durch St. Venant'sche Torsion ab und es sind daher M_o = M_{xs} = 0.

Bild 7.13 Schnittgrößen mit Lastangriff im Schwerpunkt S und Schubmittelpunkt M (links) sowie Schnittgrößen bei I-förmigen Walzprofilen (rechts)

Die Schnittgrößen beanspruchen die Querschnitte durch Normal- und Schubspannungen. In Tabelle 1.1 (Abschnitt 1.3) sind die Schnittgrößen als "Resultierende der Spannungen" zusammengestellt. Danach führen die Schnittgrößen zu den folgenden Spannungen:

•	N, M_{y}, M_{z} und M_{ω}	(B) ⇒	Normalspannungen σ _x
---	------------------------------------	-------	---------------------------------

• $V_v, V_z, M_{xp} (T_t)$ und $M_{xs} (T_w) \implies$ Schubspannungen τ

Anmerkung: Bei den Angaben in Klammern handelt es sich um Bezeichnungen, die in DIN EN 1993-1-1 verwendet werden. In Deutschland und in der Literatur sind sie bisher wenig gebräuchlich.

Die Tabellen 2.2 und 2.3 geben eine Übersicht, welche **Nachweismethoden** verwendet werden können und wie bei der Tragwerksberechnung und der Querschnittsausnutzung vorzugehen ist. Bei der Querschnittsausnutzung können drei Fälle unterschieden werden:

- Querschnitte der Klassen 1 bis 3: Berechnung der Spannungen nach der Elastizitätstheorie und Spannungsnachweise
- Querschnitte der Klassen 1 und 2: Nachweise mit Schnittgrößen und plastischen Schnittgrößen oder Interaktionsbeziehungen (Plastizitätstheorie)
- Querschnitte der Klasse 4: Berechnung der Spannungen nach der Elastizitätstheorie und Spannungsnachweise unter Berücksichtigung des Beulens

Die vorstehende Übersicht zeigt, dass zunächst die **Querschnittsklasse** festgestellt werden muss, s. Abschnitt 2.5.

Anmerkung: Die Zuordnung zu den Querschnittsklassen kann aus den Profiltabellen in [27] unmittelbar abgelesen werden. Beispiel IPE 300, S 235: In den Tabellen für die IPE-Profile steht unten rechts unter der Überschrift "Querschnittsklasse für N-M" bei S 235 "2-1". Dies bedeutet, dass der Querschnitt für Drucknormalkräfte der QK 2 zugeordnet werden kann und für Biegemomente der QK 1.

Beim Nachweis ausreichender Querschnittstragfähigkeit nach DIN EN 1993-1-1 werden die **Streckgrenzen** gemäß Tabelle 3.1 und die **Teilsicherheitsbeiwerte** gemäß Abschnitt 6.1 der Norm benötigt. Bei der "allgemeinen Bemessungssituation" sind unter Berücksichtigung des Nationalen Anhangs (NA) i. d. R. die folgenden Werte anzusetzen:

- Streckgrenzen bei Erzeugnisdicken von t ≤ 40 mm: $f_y = 23,5 \text{ kN/cm}^2$ für S 235 und $f_y = 35,5 \text{ kN/cm}^2$ für S 355 \Rightarrow Grenzschubspannungen : $\tau_R = f_y / \sqrt{3} = 13,57 \text{ kN/cm}^2$ bzw. 20,50 kN/cm²
- Teilsicherheitsbeiwerte γ_M (s. Abschnitt 2.4): $\gamma_{M0} = 1,0$ für die Beanspruchbarkeit von Querschnitten $\gamma_{M1} = 1,1$ für die Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen

7.5.2 Nachweise mit Normal- und Schubspannungen

Gemäß Abschnitt 6.2 der Norm darf die Beanspruchbarkeit von Querschnitten nach der Elastizitäts- oder Plastizitätstheorie ausgenutzt werden, sofern die Querschnitte den entsprechenden Klassen zugeordnet werden können. Von genereller Bedeutung ist die Frage, wie gemeinsam wirkende Normal- und Schubspannungen zu überlagern sind. Dafür kann gemäß Abschnitt 6.2.1(5) das Fließkriterium oder nach den Abschnitten 6.2.8 bzw. 6.2.10 der Abminderungsbeiwert ρ verwendet werden.

Bei Verwendung des **Fließkriteriums** geht man so vor, dass der Einfluss der Schubspannungen τ durch die Reduktion der Streckgrenze f_y erfasst wird, was bei Stabquerschnitten zu der folgenden Bedingung führt: