Matthias Kraus/ Rolf Kindmann

Finite-Elemente-Methoden im Stahlbau

- Anwendung der FEM ohne Fehler bei Modellbildung und Ergebnisinterpretation
- mit praxisnahen Hinweisen auf häufige Fehlerquellen
- Aufwand minimieren und die Vorteile richtig nutzen

Die Finite-Elemente-Methode (FEM) ist ein Standardverfahren zur Berechnung von Tragwerken. Für praktisch tätige Ingenieure und Studierende gleichermaßen werden alle notwendigen Berechnungen für die Bemessung auf Grundlage der europäischen Normen (EC 3) anschaulich dargestellt.

ÜBER DAS BUCH

Die Finite-Elemente-Methode (FEM) wird seit vielen Jahren im Stahlbau als Standardverfahren zur Berechnung und Bemessung von Tragwerken benutzt. Nach einer Einführung in die Methodik und Erläuterungen zum Verständnis konzentriert sich das Buch auf die Ermittlung von Schnittgrößen, Verformungen, Verzweigungslasten und Eigenformen für Stahlkonstruktionen. Neben linearen Berechnungen für Tragwerke bilden die Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen mit der Ermittlung von Verzweigungslasten und Berechnungen nach Theorie II. Ordnung wichtige Schwerpunkte. Hinzu kommt die Untersuchung von Querschnitten, für die Berechnungen mit der FEM zukünftig stark an Bedeutung gewinnen werden. Für praktisch tätige Ingenieure und Studierende gleichermaßen werden alle notwendigen Berechnungen für die Bemessung von Tragwerken auf Grundlage der europäischen Normen (Eurocode 3) anschaulich dargestellt. Dabei wird auch die Ermittlung der Grenztragfähigkeit stabilitätsgefährdeter Stützen und Träger nach der Fließzonentheorie eingehend behandelt, da zu erwarten ist, dass diese Berechnungsmethode zukünftig vermehrt in der Baupraxis verwendet werden wird. Darüber hinaus wurden für die 2. Auflage insbesondere die Berechnungsbeispiele ergänzt und vertieft.

BESTELLUNG

Anzahl	ISBN /	Titel	Preis
	978-3-433-03149-0	Finite-Elemente-Methoden im Stahlbau	€ 59*
	978-3-433-03435-4	Finite-Elemente-Methoden im Stahlbau (Print + ePDF)	€99*

	Privat	Geschäftlich	
Bitte richten Sie Ihre Bestellung an: Tel. +49 (0)30 47031-236 Fax +49 (0)30 47031-240	Firma, Abteilung	UST-ID Nr.	
marketing@ernst-und-sohn.de	Name, Vorname	Telefon	Fax
	Straße, Nr.		
	PLZ/Ort/Land	E-Mail	
www.ernst-und-sohn.	Datum/Unterschrift		

BESTELLEN +49 (0)30 470 31-236 marketing@ernst-und-sohn.de www.ernst-und-sohn.de/3149

Finite-Elemente-

2. Auflage · 2019 · 504 Seiten · 333 Abbildungen · 65 Tabellen Softcover ISBN 978-3-433-03149-0 € 59.

ISBN 978-3-433-03149-0	€ 59*
eBundle (Print + ePDF)	
ISBN 978-3-433-03435-4	€ 79*

Vorwort zur 2. Auflage

Die Erstauflage aus dem Jahre 2007 wurde vollständig überarbeitet und dem Stand der Technik entsprechend aktualisiert. Alle Berechnungsbeispiele wurden an die Bemessungsregeln der europäischen Normen, d. h. an DIN EN 1993-1-1 und DIN EN 1993-1-5, angepasst. Darüber hinaus wurde der Umfang des Buches mit über 100 Seiten beträchtlich erweitert. Die Erweiterungen betreffen im Wesentlichen Folgendes:

- Zusätzliche Berechnungsbeispiele in Kapitel 5 zur Stabilität von Stäben und Stabwerken mit ausführlichen Erläuterungen zum Nachweis ausreichender Querschnittstragfähigkeit im Abschnitt 5.1.2
- Erläuterungen zu den Nachweisen nach DIN EN 1993-1-5 zum Plattenbeulen mit zahlreichen Hinweisen zum Verständnis sowie Ergänzung und Vertiefung der Berechnungsbeispiele in Kapitel 6 zum Beulen von Platten
- Neues Kapitel 10 "FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie" mit zahlreichen Berechnungsbeispielen zum Biegeknicken und Biegedrillknicken von Stützen und Trägern
- Neues Kapitel 11 "Grundlagen zur Beschreibung des plastischen Materialverhaltens"

Die Verfasser danken Herrn M. Sc. Silvio Mämpel, Frau M. Sc. Christin Sirtl, Herrn Dipl.-Ing. Björn Wittor und Frau Dipl.-Ing. Idna Wudtke der Professur Stahl- und Hybridbau für die wertvollen Anregungen, Vorschläge und Kontrollen. Aktuelle Hinweise zum Buch werden unter www.kindmann.de und www.uni-weimar.de/stahl-hybrid bekannt gegeben.

Weimar/Dortmund, Oktober 2019

M. Kraus, R. Kindmann

Vorwort zur 1. Auflage

Für die Untersuchung von Tragwerken des Bauwesens hat sich die Methode der finiten Elemente (FEM) in den letzten 30 Jahren allgemein durchgesetzt. Möglich wurde dies durch die stürmische Entwicklung der Computertechnologie und die gezielte Weiterentwicklung computerorientierter Berechnungsverfahren. Die FEM ist heutzutage eine universelle Berechnungsmethode, die jeder Statiker sicher beherrschen muss. Das vorliegende Buch konzentriert sich auf **FE-Methoden** zur Ermittlung von Schnittgrößen, Verformungen, Verzweigungslasten (Eigenwerten) und Eigenformen für **Stahlkonstruktionen**. Neben linearen Berechnungen für **Tragwerke** bilden die Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen im Hinblick auf Verzweigungslasten und Berechnungen nach Theorie II. Ordnung wichtige Schwerpunkte. Hinzu kommen FE-Methoden für die Untersuchung von Querschnitten, die zurzeit noch relativ selten zur Anwendung kommen, zukünftig aber sicherlich stark an Bedeutung gewinnen werden.

Das vorliegende Buch ist für Studierende an Fachhochschulen, Technischen Hochschulen und Universitäten sowie Ingenieure in der Baupraxis konzipiert. Es werden daher die Grundlagen der FEM behandelt, Finite Elemente für die Untersuchungen von Stahlkonstruktionen entwickelt und neben Erläuterungen zum Verständnis Anwendungshinweise gegeben. Darüber hinaus wird mit zahlreichen Berechnungsbeispielen die Lösung baupraktischer Aufgabenstellungen gezeigt und Folgendes vermittelt:

- Welche finiten Elemente eignen sich für die im Stahlbau vorkommenden Aufgabenstellungen?
- Was ist bei der Auswahl der Elemente und der FE-Modellierung im Hinblick auf normengerechte Nachweise zu beachten?
- Welche computerorientierten Verfahren eignen sich vorzugsweise für die Finite-Elemente-Methode zur Lösung von Gleichungen und zur Ermittlung von Eigenwerten und -formen?

Die Verfasser danken Herrn Dipl.-Ing. *Niebuhr* von der Ingenieursozietät Schürmann-Kindmann und Partner, Dortmund, sowie den Herren Dr.-Ing. *Wolf* und Dipl.-Ing. *Vette* für die wertvollen Anregungen und fachlichen Diskussionen. Ein besonderer Dank gilt Frau *Habel* für die druckfertige Erstellung des Manuskriptes und Herrn *Steinbach* für die Anfertigung der Bilder. Aktuelle Hinweise zum Buch werden unter www.kindmann.de, www.rub.de/stahlbau und www.skp-ing.de veröffentlicht.

Bochum, Februar 2007

R. Kindmann, M. Kraus

Autoren

Univ.-Prof. Dr.-Ing. Matthias Kraus

studierte Bauingenieurwesen an der Technischen Universität Darmstadt. Von 2001 bis 2010 war er am Lehrstuhl für Stahl- und Verbundbau der Ruhr-Universität Bochum tätig, zunächst als Wissenschaftlicher Mitarbeiter und nach der Promotion in 2005 in der Funktion des Oberingenieurs. Im Jahre 2010 wechselte er als Oberingenieur und Abteilungsleiter Tragwerksplanung zur Ingenieursozietät Schürmann – Kindmann und Partner in Dortmund und übernahm Lehraufträge an der Ruhr-Universität Bochum und der Vietnamese-German University in Ho-Chi-Minh Stadt. Im Jahre 2015 folgte er dem Ruf an die Bauhaus-Universität Weimar zum Lehrstuhlinhaber der Professur Stahl- und Hybridbau.

Univ.-Prof. em. Dr.-Ing. Rolf Kindmann

studierte Bauingenieurwesen an der Ruhr-Universität Bochum. Von 1974 bis 1989 war er für sechs Jahre als Wissenschaftlicher Mitarbeiter an der Ruhr-Universität Bochum und für zehn Jahre in verschiedenen Positionen bei Thyssen Engineering tätig, zuletzt als Hauptabteilungsleiter aller technischen Büros. Im Jahre 1990 wurde er zum Ordinarius des Lehrstuhls für Stahl- und Verbundbau an der Ruhr-Universität Bochum ernannt und im Jahre 1991 gründete er die Ingenieursozietät Schürmann – Kindmann und Partner SKP in Dortmund, in der er als Beratender Ingenieur, Prüfingenieur für Baustatik (Fachrichtungen Metall- und Massivbau) sowie als Gutachter wirkte. Seit Beendigung seiner Tätigkeit als Gesellschafter ist Herr Prof. Kindmann der Ingenieursozietät SKP weiterhin eng verbunden

Inhaltsverzeichnis

	Vorwort	V
	Autoren	VII
1	Einleitung und Übersicht	1
1.1	Erforderliche Nachweise und Nachweisverfahren	1
1.2	Verfahren zur Schnittgrößenermittlung	2
1.3	Elementtypen und Anwendungsbereiche	4
1.4	Lineare und nichtlineare Berechnungen	6
1.5	Bezeichnungen und Annahmen	9
1.6	Grundlegende Beziehungen	15
1.7	Linearisierung	18
1.8	Software/Downloads	21
2	Grundlagen der FEM	22
2.1	Allgemeines	22
2.2	Grundideen und Methodik	22
2.3	Ablauf der Berechnungen	28
2.4	Gleichgewicht	30
2.4.1	Vorbemerkungen	30
2.4.2	Prinzip der virtuellen Arbeit	31
2.4.3	Prinzip vom Minimum der potentiellen Energie	33
2.4.4	Differentialgleichungen	35
2.5	Ansatzfunktionen für die Verformungen	37
2.5.1	Grundsätzliches	37
2.5.2	Polynomfunktionen für Stabelemente	38
2.5.3	Trigonometrische und Hyperbelfunktionen für Stabelemente	41
2.5.4	Ansatzfunktionen für das Plattenbeulen	46
2.5.5	Eindimensionale Funktionen für Querschnitte	50
2.5.6	Zweidimensionale Funktionen für Querschnitte	53
3	FEM für lineare Berechnungen von Stabtragwerken	58
3.1	Vorbemerkungen	58
3.2	Stabelemente für lineare Berechnungen	58
3.2.1	Verknüpfung der Verformungs- und Schnittgrößen	58
3.2.2	Normalkraftbeanspruchungen	60
3.2.3	Biegebeanspruchungen	63
	0	00

T 1 1.	• •	•
Inhaltsve	erzeichr	118

171

3.2.4	Torsionsbeanspruchungen	66
3.2.5	Beliebige Beanspruchungen	70
3.3	Knotengleichgewicht im globalen Koordinatensystem	73
3.4	Bezugssysteme und Transformationen	76
3.4.1	Problemstellung	76
3.4.2	Stabelemente in der X-Z-Ebene	81
3.4.3	Stabelemente im räumlichen X-Y-Z-KOS	84
3.4.4	Lastgrößen	87
3.4.5	Verdrillung und Wölbbimoment	89
3.4.6	Finite Elemente für beliebige Bezugssysteme	95
3.5	Gleichungssystem	96
3.5.1	Ziel	96
3.5.2	Gesamtsteifigkeitsmatrix	96
3.5.3	Gesamtlastvektor	98
3.5.4	Geometrische Randbedingungen	100
3.6	Berechnung der Verformungsgrößen	102
3.7	Ermittlung der Schnittgrößen	103
3.8	Ermittlung der Auflagerreaktionen	105
3.9	Einwirkungen/Lastgrößen	106
3.9.1	Einzellasten	106
3.9.2	Streckenlasten	106
3.9.3	Stützensenkungen	107
3.9.4	Temperatureinwirkungen	108
3.10	Federn und Schubfelder	109
3.11	Gelenke und Gelenkfedern	113
3.12	Einflusslinien	117
3.13	Übertragungsmatrizenverfahren	121
3.14	Schubweiche Stabelemente	126
4	FEM für nichtlineare Berechnungen von Stabtragwerken	133
41	Allgemeines	133
4.2	Gleichgewicht am verformten System	133
4.3	Ergänzung der virtuellen Arbeit	137
4.4	Knotengleichgewicht unter Berücksichtigung von Verformungen	143
4.5	Geometrische Steifigkeitsmatrix	145
4.6	Sonderfall: Biegung mit Druck- bzw. Zugnormalkraft	150
4.7	Vorverformungen und geometrische Ersatzimperfektionen	154
4.8	Berechnungen nach Theorie II. Ordnung und Nachweis-	158
	schnittgrößen	
4.9	Stabilitätsuntersuchungen/Verzweigungslasten	165
4.10	Eigenformen/Knickbiegelinien	167

4.10Eigenformen/Knickbiegelinien4.11Fließgelenktheorie

X

5Anwendungsbeispiele für Stabtragwerke1755.1Übersicht1755.1.1Allgemeines1755.1.2Nachweis ausreichender Querschnittstragfähigkeit1765.1.3Stabilitätsnachweise für Stäbe1835.1.4Auswahl der Elementtypen und -matrizen1875.1.5Tragfähigkeitsmindernde Einflüsse189
5.1Übersicht1755.1.1Allgemeines1755.1.2Nachweis ausreichender Querschnittstragfähigkeit1765.1.3Stabilitätsnachweise für Stäbe1835.1.4Auswahl der Elementtypen und -matrizen1875.1.5Tragfähigkeitsmindernde Einflüsse189
5.1.1Allgemeines1755.1.2Nachweis ausreichender Querschnittstragfähigkeit1765.1.3Stabilitätsnachweise für Stäbe1835.1.4Auswahl der Elementtypen und -matrizen1875.1.5Tragfähigkeitsmindernde Einflüsse189
5.1.2Nachweis ausreichender Querschnittstragfähigkeit1765.1.3Stabilitätsnachweise für Stäbe1835.1.4Auswahl der Elementtypen und -matrizen1875.1.5Tragfähigkeitsmindernde Einflüsse189
5.1.3Stabilitätsnachweise für Stäbe1835.1.4Auswahl der Elementtypen und -matrizen1875.1.5Tragfähigkeitsmindernde Einflüsse189
5.1.4Auswahl der Elementtypen und -matrizen1875.1.5Tragfähigkeitsmindernde Einflüsse189
5.1.5 Tragfähigkeitsmindernde Einflüsse 189
107
5.2 Träger 190
5.2.1 Vorbemerkungen 190
5.2.2 Einfeldträger mit Kragarm 190
5.2.3 Traglast eines Zweifeldträgers 193
5.2.4 Zweifeldträger mit elastischem Mittelauflager 197
5.2.5 Träger mit planmäßiger Torsion 199
5.2.6 Kranbahnträger 201
5.3 Stützen und andere Druckstäbe 205
5.3.1 Vorbemerkungen 205
5.3.2 Elastisch eingespannte Rohrstütze 205
5.3.3 Stütze mit planmäßiger Biegung und drei Stabilitätsfällen 207
5.3.4 Giebelwandeckstütze 210
5.4 Fachwerke 214
5.4.1 Vorbemerkungen 214
5.4.2 Ebener Fachwerkbinder 214
5.4.3 Montagezustand des Torbinders einer Flugzeughalle 218
5.5 Rahmen und Stabwerke 220
5.5.1 Vorbemerkungen 220
5.5.2 Zweigelenkrahmen mit Zwischenbühne 221
5.5.3 Rahmen unter Berücksichtigung von Anschlusssteifigkeiten 225
5.5.4 Haupttragwerk einer Stabbogenbrücke 231
5.5.5 Silodachkonstruktion 235
5.6 Trägerroste 239
5.6.1 Vorbemerkungen 239
5.6.2Fahrbahn einer Stabbogenbrücke240
6 FEM für ebene Flächentragwerke – Plattenbeulen 242
6.1 Scheiben und Platten 242
6.2 Spannungen und Schnittgrößen 242
6.3 Verschiebungsgrößen 244
6.4 Grundlegende Beziehungen 245
6.5 Prinzip der virtuellen Arbeit 247

6.6

Scheiben und Platten im Stahlbau

ЛП		Inhaltsverzeichnis
6.7	Steifigkeitsmatrix für ein Plattenelement	251
6.8	Geometrische Steifigkeitsmatrix für das Plattenbeulen	255
6.9	Längs- und querausgesteifte Platten	256
6.10	Plattenbeulnachweise nach DIN EN 1993-1-5	258
6.11	Berechnung von Beulspannungen und Beulflächen	264
6.12	Anwendungsbeispiele zum Plattenbeulen	271
6.12.1	Vorbemerkungen	271
6.12.2	Einzelfeld mit konstantem σ_x	271
6.12.3	Ein- und zweiwellige Beulflächen, gleiche Beulspannunger	n 274
6.12.4	Stegblech einer Verbundbrücke mit Schubbeanspruchung	276
6.12.5	Stegblech mit Biegebeanspruchung	277
6.12.6	Bodenblech mit Längssteife	279
6.12.7	Vollwandträgersteg mit Längssteifen	283
6.12.8	Veränderte Anordnung der Längssteifen	292
7	FFM für Stabouerschnitte	294
71	Aufzehenstellungen	204
7.1	Aurgabenstenungen Normiorte Perugesysteme und Ouerschnittskennworte	294
7.2	Prinzip der virtuellen Arbeit	290
7.5	Findimonsionale Elemente für dünnwandige Querschnitte	299
7.4	Virtualle Arbeit	304
7.4.1	Flementsteifigkeitsbeziehungen	304
7.4.2	Cleichungssysteme	300
7.4.5	Berechnungen der Querschnittswerte und Spannungen	307
7.4.4	Zusammenstellung	314
7.4.5	Zusammenstenung Zweidimensionale Elemente für dickwandige Ouerschnitte	315
7.5 1	Vorbemerkungen	315
7.5.1	Virtuelle Arbeit für dickwandige Ouerschnittselemente	315
7.5.2	Flementgeometrie	318
754	Transformationsbeziehungen	321
755	Steifigkeitsbeziehungen	323
756	Numerische Integration	325
757	Querschnittswerte und Spannungen	328
758	Güte der Näherungslösungen	320
759	Sonderfall: Rechteckige Elemente	331
7.6	Berechnungsahlauf	335
77	Anwendungsbeisniele	335
771	Vorhemerkungen	227
777	Finzelliger Hohlkastenguerschnitt	337
772	Brückenquerschnitt mit Trapezsteifen	342
111		1 +4

7.7.5Doppeltsymmetrischer I-Querschnitt3517.7.6Kranschiene3587.7.7Numerische Erfassung des Schubverzerrungseinflusses auf die Normalspannungsverteilung3607.8Schubkorrekturfaktoren3628Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gaußscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Grundlegende Einführungsbeispiele39510.3Derücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4.4Zum Einfluss der Imperfektionen41310.4.3Imperfektionen41310.4.4Zum Einfluss der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie	Inhaltsverzeichnis		XIII
1.1.11.1.11.1.11.1.11.7.6Kranschiene3587.7.7Numerische Erfassung des Schubverzerrungseinflusses auf die Normalspannungsverteilung3607.8Schubkorrekturfaktoren3628Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gaufbscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Derhungsiteration für ox-Schnittgrößen40010.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für ox-Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen416 <th>7.7.5</th> <th>Doppeltsymmetrischer I-Querschnitt</th> <th>351</th>	7.7.5	Doppeltsymmetrischer I-Querschnitt	351
7.7.7Numerische Erfassung des Schubverzerrungseinflusses auf die Normalspannungsverteilung3607.8Schubkorrekturfaktoren3628Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gaußscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fliedzonentheorie39510.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4.4Zum Einfusder Imperfektionen41310.4.3Imperfektionen41310.4.4Zum Einflusder Imperfektionen42010.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	7.7.6	Kranschiene	358
die Normalspannungsverteilung3627.8Schubkorrekturfaktoren3678.Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gau/Scher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Berücksichtigung der physikalischen Nichtlinearität40210.3.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41310.4.4Zum Einfluss der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung	7.7.7	Numerische Erfassung des Schubverzerrungseinflusses auf	360
7.8Schubkorrekturfaktoren3628Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gaufscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3769.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Grundlegende Einführungsbeispiele39510.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungstieration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422		die Normalspannungsverteilung	
8Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gaußscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Grundlegende Einführungsbeispiele39510.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	7.8	Schubkorrekturfaktoren	362
8Gleichungssysteme3678.1Problemstellung3678.2Lösungsverfahren3688.3Gaußscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3869.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Bertücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41310.4.4Zum Einfluss der Imperfektionen42010.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422			
8.1Problemstellung3678.2Lösungsverfahren3688.3Gaußscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Bertücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiele39510.3Derhungstieration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einflus der Imperfektionen42010.5.5Gleichgewicht42210.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen42010.4.4Zum Einflus der Imperfektionen42010.5.5Gleichu	8	Gleichungssysteme	367
8.2Lösungsverfahren3688.3Gaußscher Algorithmus3698.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41310.4.4Zum Einflust der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.1	Problemstellung	367
8.3 $Gau\betascher$ Algorithmus3698.4 $Cholesky$ -Verfahren3708.5 $Gaucho$ -Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einflus der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.2	Lösungsverfahren	368
8.4Cholesky-Verfahren3708.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.2Grundlegende Einführungsbeispiele39510.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungstieration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen42010.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.3	Gaußscher Algorithmus	369
8.5Gaucho-Verfahren3708.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungstieration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.4	Cholesky-Verfahren	370
8.6Berechnungsbeispiel3728.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.2Grundlegende Einführungsbeispiele39510.3Berücksichtigung der physikalischen Nichtlinearität40210.3.3Dehnungsteration für σ_x -Schnittgrößen40610.4.1Vorbemerkungen41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.5	Gaucho-Verfahren	370
8.7Ergänzende Hinweise3749Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berticksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42210.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.6	Berechnungsbeispiel	372
9Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	8.7	Ergänzende Hinweise	374
9Lösung von Eigenwertproblemen3759.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42210.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422			
9.1Problemstellung3759.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42210.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	9	Lösung von Eigenwertproblemen	375
9.2Erläuterungen zum Verständnis3769.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	9.1	Problemstellung	375
9.3Matrizenzerlegungsverfahren3819.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen42010.5Gleichgewicht42210.5Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	9.2	Erläuterungen zum Verständnis	376
9.4Inverse Vektoriteration3869.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen42010.5Gleichgewicht42210.5Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	9.3	Matrizenzerlegungsverfahren	381
9.5Kombination der Lösungsverfahren39210FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	9.4	Inverse Vektoriteration	386
10FEM für nichtlineare Berechnungen von Stäben nach der Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	9.5	Kombination der Lösungsverfahren	392
Fließzonentheorie39510.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10	FEM für nichtlineare Berechnungen von Stäben nach der	395
10.1Einführung39510.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422		Fließzonentheorie	
10.1.1Vorbemerkungen39510.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.1	Einführung	395
10.1.2Grundlegende Einführungsbeispiele39510.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.1.1	Vorbemerkungen	395
10.2Hinweise zu geometrisch nichtlinearen Berechnungen39810.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.1.2	Grundlegende Einführungsbeispiele	395
10.3Berücksichtigung der physikalischen Nichtlinearität40210.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.2	Hinweise zu geometrisch nichtlinearen Berechnungen	398
10.3.1Vorbemerkungen40210.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.3	Berücksichtigung der physikalischen Nichtlinearität	402
10.3.2Einführungsbeispiel40210.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.3.1	Vorbemerkungen	402
10.3.3Dehnungsiteration für σ_x -Schnittgrößen40610.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.3.2	Einführungsbeispiel	402
10.4Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie41310.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.3.3	Dehnungsiteration für σ_x -Schnittgrößen	406
10.4.1Vorbemerkungen41310.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.4	Grundlagen und Annahmen für Berechnungen nach der Fließzonentheorie	413
10.4.2Werkstoffgesetz41310.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.4.1	Vorbemerkungen	413
10.4.3Imperfektionen41610.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.4.2	Werkstoffgesetz	413
10.4.4Zum Einfluss der Imperfektionen42010.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.4.3	Imperfektionen	416
10.5Gleichgewicht42210.5.1Inkrementelles Gleichungssystem nach Theorie II. Ordnung422	10.4.4	Zum Einfluss der Imperfektionen	420
10.5.1 Inkrementelles Gleichungssystem nach Theorie II. Ordnung 422	10.5	Gleichgewicht	422
	10.5.1	Inkrementelles Gleichungssystem nach Theorie II. Ordnung	422

XIV	Inhaltsve	erzeichnis
10.5.2	Verallgemeinertes inkrementell-iteratives Verfahren	428
10.5.3	Bogenlängenverfahren	432
10.6	Steifigkeitsmatrix für Bauteile mit Fließzonen	434
10.7	Berechnungsbeispiele	438
10.7.1	Fließzonenberechnungen auf Grundlage von DIN EN 1993	438
10.7.2	Berechnungen mit dem Programm FE-STAB-FZ	439
10.7.3	Bauteile mit doppeltsymmetrischen I-Querschnitten	440
10.7.4	Stütze HEA 140 mit Druckkraft und planmäßiger Biegung	443
10.7.5	Einfeldträger IPE 300 mit Druckkraft und planmäßiger Biegung	445
10.7.6	Stütze IPE 300 mit Einspannung am Stützenfuß	447
10.7.7	Einfeldträger IPE 450 mit Kragarm	449
10.7.8	Zweifeldriger Kranbahnträger HEB 300	451
10.7.9	Biegung und Torsion eines Versuchsträgers IPE 200	454
10.7.10	Zweiachsig außermittig belastete Versuchsstütze HEB 200	457
10.7.11	Auswirkungen von Fließzonen auf die Tragfähigkeit	461
11	Grundlagen zur Beschreibung des plastischen Material- verhaltens	465
11.1	Einleitung	465
11.2	Grundlegende mechanische Beziehungen	466
11.2.1	Spannungs- und Verzerrungstensor	466
11.2.2	Zusammenhang zwischen Spannungen und Verzerrungen	469
11.3	Beschreibung der Plastizität	472
11.3.1	Fließkriterium	472
11.3.2	Verfestigungsregel	476
11.3.3	Fließregel	480
11.4	Hinweise zur Berücksichtigung der Plastizität in numerischen Berechnungen	486

Literaturverzeichnis	489
Stichwortverzeichnis	495

7 FEM für Stabquerschnitte

7.1 Aufgabenstellungen

Für die Berechnung von Stäben und Stabwerken hat sich die Methode der finiten Elemente allgemein durchgesetzt. Selbst für die Untersuchung einfacher, statisch bestimmter Systeme verwendet man die FEM, da sie mit geringem Aufwand schnell und sicher die Zustandsgrößen für die Nachweise einer statischen Berechnung liefert. Die Methode hat sich in diesem Bereich zur Standardmethode entwickelt, so dass es nahe liegt, sie auch bei anderen Problemstellungen, wie für die Untersuchung von Querschnitten, einzusetzen, worauf in diesem Kapitel eingegangen wird.

Um einen zweckmäßigen Anwendungsbereich der FEM für Querschnitte festzulegen ist es zunächst sinnvoll, die im Stahlbau vorkommenden Querschnittsformen zu klassifizieren. Wie in Bild 7.1 dargestellt, kann man folgende Einteilung vornehmen:

•M

- a) dünnwandige, offene Querschnitte
- b) dünnwandige, geschlossene Querschnitte
- c) beliebige dickwandige Querschnitte

Bild 7.1 Zur Klassifizierung von Querschnitten

Als dünnwandig werden Querschnitte bezeichnet, wenn durch eine Reduzierung auf die Profilmittellinie und die Anwendung vereinfachter Theorien ausreichend genaue Berechnungsergebnisse erzielt werden, s. Bild 7.2 und Bild 2.17. Die Querschnitte setzen sich überwiegend aus rechteckigen Teilquerschnitten zusammen, wobei zwi-

Finite-Elemente-Methoden im Stahlbau, Zweite Auflage. Matthias Kraus und Rolf Kindmann. © 2020 Wilhelm Ernst & Sohn. Published 2020 by Wilhelm Ernst & Sohn. schen offenen und geschlossenen Querschnittsformen unterschieden wird. Ab einem Verhältnis von etwa $\ell/t > 10$ werden Bleche als dünnwandig eingestuft, so dass Stahlquerschnitte mit den üblichen Blechabmessungen in der Regel als dünnwandig gelten.

Bild 7.2 Beispiel für die Reduzierung eines Querschnitts auf die Profilmittellinie (H-Bahn)

In Ausnahmefällen ist es erforderlich, Querschnitte mit einer genaueren und aufwändigeren Theorie zu untersuchen. Hierbei handelt es sich um die Kategorie der beliebigen, dickwandigen Querschnitte. Beispiele hierfür sind Vollquerschnitte oder Walzprofile, wenn für diese genaue Lösungen erzielt werden sollen.

Die Untersuchung von Querschnitten ist mit verschiedenen Aufgabenstellungen verbunden. Tabelle 7.1 gibt im Hinblick auf die Anwendung der FEM einen Überblick. Dabei ist zu beachten, dass im Hoch- und Industriebau die plastische Querschnittstragfähigkeit von besonderem Interesse ist und im Brückenbau die Spannungsermittlung für große mehrteilige Querschnitte im Vordergrund steht.

Aus Tabelle 7.1 wird deutlich, dass bei dünnwandigen, offenen Querschnitten (Bild 7.1a) auf den Einsatz der FEM verzichtet werden kann. Bei dünnwandigen Hohlquerschnitten (Bild 7.1b) liegt bei der Berechnung der normierten Wölbordinate ω und der Schubspannungen ein statisch unbestimmtes Problem vor, dessen Lösung mit einem relativ großen Aufwand verbunden ist (s. [12]), so dass hier der Einsatz der FEM zweckmäßig ist. Für dickwandige Querschnitte (Bild 7.1c) existieren nur zu einigen grundlegenden Formen wie für Rechtecke, gleichseitige Dreiecke und Ellipsen analytische Lösungen zur Bestimmung von ω , τ_{xy} und τ_{xz} . Damit sind numerische Methoden wie die FEM für solche Querschnitte unumgänglich.

Im Übrigen können insbesondere dünnwandige Querschnitte mit der Methode der finiten Elemente ähnlich schnell und sicher wie Stäbe und Stabwerke untersucht werden. Aus diesem Grund ist davon auszugehen, dass sich die FEM auch in diesem Anwendungsbereich selbst bei einfachen Querschnitten als Standardmethode durchsetzen wird.

Aufgabenstellung	Berechnung mit oder ohne FEM?
① Normierte Bezugssysteme	
 a) Lage des Schwerpunktes S, Hauptachsen y und z 	FEM nicht erforderlich, Berechnung mit FE-Modellierung ist zweckmäßig.
 b) Lage des Schubmittelpunktes M, normierte Wölbordinate ω 	FEM zweckmäßig/erforderlich für geschlossene und dickwandige Querschnitte.
② Querschnittskennwerte	
 a) Fläche A, Hauptträgheitsmomente I_y und I_z 	FEM nicht erforderlich, Berechnung mit FE-Modellierung ist zweckmäßig.
 b) Wölbwiderstand I₀, Torsionsträgheitsmoment I₁ 	FEM zweckmäßig/erforderlich zur Berechnung der benötigten Wölbordinate ω.
③ Spannungen	
a) σ_x infolge N, M_y, und M_z	FEM nicht erforderlich, Berechnung mit FE-Modellierung ist zweckmäßig.
b) σ_x infolge M_{ω}	FEM zweckmäßig/erforderlich zur Berechnung der benötigten Wölbordinate ω
c) τ infolge V_y, Vz, M_{xp} und M_{xs}	FEM zweckmäßig/erforderlich für geschlossene und dickwandige Querschnitte.
④ Plastische Querschnittstragfähigkeit	Wird hier nicht behandelt, s. Abschn. 5.1.2

Tabelle 7.1 Aufgabenstellungen für die Untersuchung von Querschnitten

7.2 Normierte Bezugssysteme und Querschnittskennwerte

Für die Berechnung der Querschnittskennwerte gemäß Punkt O in Tabelle 7.1 werden normierte Bezugssysteme gemäß Punkt O benötigt. Sofern sie sich nicht aus Symmetriebedingungen ergeben, müssen sie rechnerisch bestimmt werden. Hier wird aus Gründen der Übersichtlichkeit wie in [12] in zwei Teile gegliedert:

- Teil I: Bestimmung des y-z-Hauptachsensystems
 - Lage des Schwerpunktes S (y_s, z_s)
 - Richtung der Hauptachsen (Winkel α)
 - Ordinaten im y-z-Hauptachsensystem
 - Querschnittskennwerte A, Iy, Iz
- Teil II: Bestimmung des ω-Hauptsystems
 - Lage des Schubmittelpunktes M (y_M, z_M)
 - Normierte Wölbordinate ω
 - Querschnittskennwerte I_{ω} , I_T

Bild 7.3 Koordinatensysteme bei der Normierung Teil I

Für den **Teil I** der Querschnittsnormierung wählt man einen beliebigen Bezugspunkt B, der den Ursprung eines $\overline{y} - \overline{z}$ -Bezugskoordinatensystems darstellt. Mit den Bedingungen $A_y = A_z = 0$ können die Lage des Schwerpunktes S eines Querschnitts und ein zum $\overline{y} - \overline{z}$ -System parallel verschobenes $\tilde{y} - \tilde{z}$ -Koordinatensystem bestimmt werden. Dieses System hat gemäß Bild 7.3 seinen Ursprung im Schwerpunkt und durch die Erfüllung der Bedingung $A_{yz} = 0$ wird es um den Winkel α in das y-z-*Hauptachsensystem* gedreht, in dem die *Hauptträgheitsmomente* I_y und I_z bestimmt werden können. Tabelle 7.2 enthält eine Zusammenstellung der erforderlichen Berechnungen.

Tabelle 7.2 Berechnung normierter Querschnittswerte Teil I, [12]

(1) A, A_ȳ und A_{z̄} im ȳ - z̄ - Koordinatensystem berechnen:
A =
$$\int_{A} dA$$
; A_ȳ = $\int_{A} \overline{y} \cdot dA$; A_{z̄} = $\int_{A} \overline{z} \cdot dA$
(2) Lage des Schwerpunktes: $\overline{y}_{S} = A_{\overline{y}}/A$; $\overline{z}_{S} = A_{\overline{z}}/A$
(3) Koordinaten transformieren: $\tilde{y} = \overline{y} - \overline{y}_{S}$; $\tilde{z} = \overline{z} - \overline{z}_{S}$
(4) A_{ȳz̄}, A_{ȳȳ} und A_{z̄z̄} im $\tilde{y} - \tilde{z}$ - Koordinatensystem berechnen:
A_{ȳz̄} = $\int_{A} \tilde{y} \cdot \tilde{z} \cdot dA$; A_{ȳȳ} = $\int_{A} \tilde{y}^{2} \cdot dA$; A_{z̄z̄} = $\int_{A} \tilde{z}^{2} \cdot dA$
(5) Hauptachsendrehwinkel α : $\alpha = \frac{1}{2} \arctan\left(\frac{2A_{ȳz}}{A_{ȳȳ}}\right)$
(6) Koordinaten transformieren: $y = \tilde{y} \cdot \cos \alpha + \tilde{z} \cdot \sin \alpha$
 $z = \tilde{z} \cdot \cos \alpha - \tilde{y} \cdot \sin \alpha$

(7) Hauptträgheitsmomente I_y und I_z berechnen: I_y = A_{zz} = $\int_{A} z^2 \cdot dA$; I_z = A_{yy} = $\int_{A} y^2 \cdot dA$

Bei der Berechnung normierter Querschnittswerte **Teil II** ist das vorrangige Ziel, die Lage des Schubmittelpunktes M zu berechnen. Da diese Lage nicht bekannt ist, muss zunächst ein Drehpunkt D gewählt werden, auf den sich die Wölbordinate $\overline{\omega}$ bezieht.

Berechnung von: • A • $\overline{y}_{s}; \overline{z}_{s}$ • α • y; z• $I_{y}; I_{z}$ Bild 7.4 zeigt dazu ein Beispiel und darüber hinaus die Wahl des Integrationsanfangspunktes A sowie die Profilordinate s für jedes Querschnittsteil.

Die erforderlichen Berechnungen für die Normierung Teil II sind in Tabelle 7.3 zusammengestellt. Mit der Bedingung $A_{\omega} = 0$ kann die Transformationskonstante $\overline{\omega}_k$ für die Wölbordinate ermittelt werden. Danach wird die Lage des Schubmittelpunktes bestimmt. Die Differenzen $y_M - y_D$ und $z_M - z_D$ kennzeichnen seine Lage bezüglich des angenommenen Drehpunktes D. Mit diesen Werten ergibt sich die Wölbordinate ω wie in Punkt 6 von Tabelle 7.3 angegeben. Sie dient zur Berechnung des Wölbwiderstandes I_{ω} und I_T , die bei computerorientierten Berechnungen in der Regel unter Verwendung der Gln. (7.30) und (7.33) bzw. (7.61) und (7.62) ermittelt werden.

D: beliebiger Drehpunkt A: Integrationsanfangspunkt

Der dargestellte Drehsinn für $\overline{\omega}$ gibt Aufschluss über das Vorzeichen.

Bild 7.4 Ausgangspunkt für die Normierung Teil II

Tabelle 7.3 Berechnung normierter Querschnittswerte Teil II, [12]

() Voraussetzungen: A, Iy und Iz sind bekannt; y und z sind Hauptachsen

(2) $A_{\overline{\omega}}, A_{y\overline{\omega}}, A_{z\overline{\omega}}$ und $A_{\overline{\omega}\overline{\omega}}$ für einen beliebigen Integrationsanfangspunkt und Drehpunkt D berechnen:

 $A_{\overline{\omega}} = \int_{A} \overline{\omega} \cdot dA; \quad A_{y\overline{\omega}} = \int_{A} y \cdot \overline{\omega} \cdot dA; \quad A_{z\overline{\omega}} = \int_{A} z \cdot \overline{\omega} \cdot dA; \quad A_{\overline{\omega}\overline{\omega}} = \int_{A} \overline{\omega}^2 \cdot dA$

- (3) Transformationskonstante für die Wölbordinate: $\overline{\omega}_{k} = A_{\overline{\omega}}/A$
- (4) Lage des Schubmittelpunktes:

$$y_{M} - y_{D} = \frac{A_{z\overline{\omega}}}{I_{v}}; \quad z_{M} - z_{D} = -\frac{A_{y\overline{\omega}}}{I_{z}}$$

(5) Wölbwiderstand I_{ω} und Torsionsträgheitsmoment I_{T} :

$$\begin{split} I_{\omega} &= \int_{A} \omega^{2} \cdot dA = A_{\overline{\omega}\overline{\omega}} - \overline{\omega}_{k}^{2} \cdot A - \left(y_{M} - y_{D}\right)^{2} \cdot I_{y} - \left(z_{M} - z_{D}\right)^{2} \cdot I_{z} \\ I_{T} &= \int_{A} \left[\left(-\frac{\partial \omega}{\partial z} + \left(y - y_{M}\right) \right) \cdot \left(y - y_{M}\right) + \left(\frac{\partial \omega}{\partial y} + \left(z - z_{M}\right) \right) \cdot \left(z - z_{M}\right) \right] \cdot dA \end{split}$$

6 Normierte Wölbordinate:

$$\omega = \overline{\omega} - \overline{\omega}_{k} - z \cdot (y_{M} - y_{D}) + y \cdot (z_{M} - z_{D})$$

Berechnung von: • ω
• y_M; z_M • ω
• l_ω; l_T Betrachtet man die Normierung im Hinblick auf die Anwendung der Methode der finiten Elemente, so zeigt sich, dass für den ersten Teil eine Untersuchung auf Basis der FEM nicht erforderlich ist. Für sämtliche Querschnittsformen können die Lage des Schwerpunktes, die Richtung der Hauptachsen sowie die Hauptträgheitsmomente problemlos ohne die FEM bestimmt werden. Aus diesem Grund wird in den folgenden Abschnitten stets davon ausgegangen, dass **Teil I der Normierung bereits abge-**schlossen ist.

Anmerkungen: Prinzipiell bietet es sich natürlich an, die mit der FEM verbundene Elementierung eines Querschnitts auch zur Bestimmung des y-z-Hauptachsensystems zu nutzen. Dazu müssen die in Tabelle 7.2 auftretenden Integrationen durchgeführt werden, was für dünnwandige Querschnitte in Anlehnung an Tabelle 7.4 erfolgen kann. Zur Berechnung der Hauptträgheitsmomente I_y und I_z mithilfe der FE-Elementierung kann die Formulierung für den Wölbwiderstand I_o nach Gl. (7.30) entsprechend angepasst werden. Dies lässt sich problemlos durchführen, so dass eine weitere Vertiefung nicht erforderlich ist. Gleiches gilt für beliebige, dickwandige Querschnitte. Zur Durchführung der Normierung Teil I sowie der anschließenden Berechnung von Querschnittswerten wird auf Tabelle 7.8 und Gl. (7.61) verwiesen. Die Anpassung an die Integrationen des ersten Teils der Normierung ist problemlos möglich.

7.3 Prinzip der virtuellen Arbeit

Gemäß Abschnitt 2.4.2 ist die Bedingung

$$\delta W = \delta W_{\text{ext}} + \delta W_{\text{int}} = 0 \tag{7.1}$$

die allgemeine Forderung, dass Gleichgewicht vorhanden ist. Diese Bedingung wurde in den Kapiteln 3 und 4 für die Herleitung der **Stabelemente** verwendet und soll auch für die **Querschnittselemente** zum Einsatz kommen. Das Ziel ist die Formulierung von Steifigkeitsbeziehungen für Querschnittselemente, die der Gl. (3.1) für die lineare Stabtheorie entsprechen:

$$\underline{\mathbf{s}}_{e} = \underline{\mathbf{K}}_{e} \cdot \underline{\mathbf{v}}_{e} - \underline{\mathbf{p}}_{e} \tag{7.2}$$

Zunächst wird nur die **innere virtuelle Arbeit** betrachtet und später, im Zusammenhang mit den Querschnittselementen die **äußere virtuelle Arbeit** ergänzt.

Nach [12] lautet die innere virtuelle Arbeit unter Berücksichtigung von Normalspannung σ_x und Schubspannungen τ_{xy} sowie τ_{xz} für Stäbe:

$$\delta W_{int} = -\iint_{x A} \left(\sigma_x \cdot \delta \varepsilon_x + \tau_{xy} \cdot \delta \gamma_{xy} + \tau_{xz} \cdot \delta \gamma_{xz} \right) \cdot dA \cdot dx$$
(7.3)

Wölbordinate **w**

Mit der Wölbordinate, auch Einheitsverwölbung genannt, werden die Verschiebungen u in Stablängsrichtung infolge Torsion beschrieben. Gemäß Gl. (1.1) ist

$$\mathbf{u}(\mathbf{x},\mathbf{y},\mathbf{z}) = -\boldsymbol{\omega}(\mathbf{y},\mathbf{z}) \cdot \boldsymbol{\vartheta}'(\mathbf{x}),\tag{7.4}$$

d. h. für eine Verdrillung $\vartheta' = -1$ ist $u = \omega$, so dass die Längsverschiebungen eines Querschnitts den Verwölbungen entsprechen. Die Wölbordinate gibt dabei den Verformungszustand der **primären Torsion** wieder, da die übrigen Schubspannungen im Rahmen der betrachteten Stabtheorie vernachlässigt wurden. Die entsprechende virtuelle Arbeit ist in Tabelle 2.2 zusammengestellt und das primäre Torsionsmoment $M_{xp} = GI_T \cdot \vartheta'$ kann aus Tabelle 2.3 abgelesen werden. Bild 7.5 zeigt beispielhaft die Verwölbungen für einen rechteckigen Vollquerschnitt und ein gewalztes I-Profil.

Bild 7.5 Verwölbungen infolge primärer Torsion für $\vartheta' = -1$

Bei der primären Torsion treten definitionsgemäß keine Normalspannungen auf, sondern ausschließlich Schubspannungen. In Gl. (7.3) kann daher $\sigma_x = 0$ gesetzt werden. Für die Schubanteile werden die Gln. (1.4d) und (1.4e)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \left[-\left(z - z_M\right) - \frac{\partial \omega}{\partial y} \right] \cdot \vartheta'$$
(7.5a)

$$\gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \left[\left(y - y_M \right) - \frac{\partial \omega}{\partial z} \right] \cdot \vartheta'$$
(7.5b)

verwendet. Die Gln. (7.5) enthalten bereits Umrechnungen mit den Gln. (1.1) bis (1.3), so dass die Terme auf der rechten Seite (mit den eckigen Klammern) für die Stabtheorie gelten. Da die virtuelle Arbeit bezüglich der Wölbordinate formuliert werden soll, wird $\vartheta' = -1$ gesetzt und die virtuellen Schubgleitungen ergeben sich wie folgt:

$$\delta \gamma_{xy} = \frac{\partial (\delta \omega)}{\partial y} \tag{7.6a}$$

$$\delta \gamma_{xz} = \frac{\partial (\delta \omega)}{\partial z} \tag{7.6b}$$

Die Schubspannungen werden mit dem Werkstoffgesetz, Gln. (1.6) und (1.7), durch die Schubgleitungen ersetzt und man erhält:

$$\tau_{xy} = \mathbf{G} \cdot \boldsymbol{\gamma}_{xy} \tag{7.7a}$$

$$\tau_{xz} = \mathbf{G} \cdot \boldsymbol{\gamma}_{xz} \tag{7.7b}$$

Mit $\sigma_x = 0$, den Gln. (7.5) bis (7.7) sowie $\vartheta' = -1$ kann Gl. (7.3) umgeformt werden und man erhält die folgende Formulierung für die innere virtuelle Arbeit:

$$\delta \mathbf{W}_{\text{int}} = -\mathbf{G} \cdot \int_{\mathbf{A}_{e}} \left(\frac{\partial (\delta \omega)}{\partial \mathbf{y}} \cdot \left(\frac{\partial \omega}{\partial \mathbf{y}} + \left(\mathbf{z} - \mathbf{z}_{\mathbf{M}} \right) \right) + \frac{\partial (\delta \omega)}{\partial \mathbf{z}} \cdot \left(\frac{\partial \omega}{\partial \mathbf{z}} - \left(\mathbf{y} - \mathbf{y}_{\mathbf{M}} \right) \right) \right) \cdot \mathbf{d} \mathbf{A}_{e}$$
(7.8)

Im Vergleich zu Gl. (7.3) wurde Gl. (7.8) auf die Querschnittsebene reduziert, weil die Verwölbung eines Querschnitts berechnet werden soll. Der Index "e" kennzeichnet, dass ein Querschnittselement betrachtet wird. Gl. (7.8) wird in den Abschnitten 7.4 und 7.5 als Ausgangspunkt für die Herleitung finiter Querschnittselemente verwendet.

Schubverformungen u infolge Querkraft und sekundärer Torsion

Die innere virtuelle Arbeit in Gl. (7.3) soll so umgeformt werden, dass der Zusammenhang zwischen den Schnittgrößen V_y , V_z sowie M_{xs} und den korrespondierenden Verformungen in der Querschnittsebene hergestellt wird. Damit sollen finite Querschnittselemente hergeleitet werden, die die Berechnung der Verformungen infolge V_y , V_z und M_{xs} mithilfe der FEM ermöglichen. Das eigentliche Ziel ist aber die anschließende Ermittlung der Schubspannungen.

Bild 7.7 zeigt beispielhaft die mit der FEM ermittelten Verschiebungen u für einen rechteckigen Vollquerschnitt und ein gewalztes I-Profil. Mit den dargestellten Verläufen können die Schubspannungen berechnet werden, was in den Abschnitten 7.4 und 7.5 ausführlich gezeigt wird.

Zunächst wird der 1. Term in Gl. (7.3) mithilfe der *partiellen Integration* umgeformt. Mit Gl. (1.4a) ist $\delta \varepsilon_x = \delta u'$ und man erhält:

$$\iint_{xA} \delta u' \cdot \sigma_{x} \cdot dA \cdot dx = \iint_{A} \left[\left[\delta u \cdot \sigma_{x} \right]_{x=0}^{x=\ell} - \int_{x} \delta u \cdot \sigma'_{x} \cdot dx \right] \cdot dA$$
(7.9)

Die Umformung ist erforderlich, weil hier nicht die Normalspannungen σ_x berechnet werden sollen, sondern die Schubspannungen τ . Bild 7.6 zeigt den bekannten Zusammenhang zwischen den Spannungen und den Schnittgrößen. Die Ableitung der Normalspannung σ'_x ist daher gleich $-\partial \tau/\partial s$.

Bild 7.7 Schubverformungen u infolge von Querkräften und sekundärer Torsion

In Gl. (7.3) werden nun die Terme behandelt, die die Schubspannungen τ_{xy} und τ_{xz} enthalten. Nach wie vor gilt natürlich das Werkstoffgesetz $\tau_{xy} = G \cdot \gamma_{xy}$ und $\tau_{xz} = G \cdot \gamma_{xz}$, s. Gln. (7.7). Die Schubgleitungen in der Formulierung von Gl. (7.5) können hier jedoch nicht verwendet werden, weil sie auf Grundgleichungen der klas-