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Preface

Before the energy crises of the 1970s, designing buildings based on performance was
hardly an issue. It was an art. However, together with the move towards more energy
efficiency after 1973, the interest in handling a performance approach grew. The
book “Applied Building Physics” forwarded an overall rationale at the whole build-
ing and building assembly level, for the last with emphasis on the heat, air, moisture
requirements and metrics.

This third book in this series of three dealing with building physics and its applica-
tion looks to the impact a performance requirement-linked approach has on building
design and construction. It starts with a resumption of what is expected from build-
ings, followed by discussing a range of materials needed to guarantee a correct heat,
air and moisture response. Then, the focus turns to preparing the building site, the
excavations needed, the foundations, the below-grade parts and spaces, the struc-
tural systems commonly used, the floors, different types of outer walls, different
types of roof assemblies, the glazing, windows, outer doors, glass façades, inside
walls, balconies, all kind of shafts, chimneys, stairs, timber-frame construction, wall,
floor and ceiling finishes. The whole book ends with looking to the risks deficiencies
may cause.

Each time again, not only the heat, air and moisture-related metrics but also
structural integrity, acoustics, durability, fire safety, maintenance, sustainability and
buildability are discussed. To do so, besides years of teaching, research and curing
damage cases due to failing performance, a bunch of national and international
sources and literature has been consulted, which is why each chapter ends with an
extended has read list.

The book uses SI units. It could be of help for undergraduate and graduate stu-
dents in architectural and building engineering, although also practicing building
engineers, who want to refresh their knowledge, may benefit. It is presumed that the
reader has some background in structural engineering, building physics, building
materials and building construction.

Acknowledgements

The book reflects the work of many, not only of the author. Therefore, we thank
the thousands of students we had during 38 years of teaching. They gave us the



xxii Preface

opportunity to test the content. The book should also not have been written the
way it is if not standing on the shoulders of those who preceded. Although we
started our career as a structural engineer, our predecessor Professor Antoine de
Grave planted the seeds that fed the interest in building physics. The late Bob Vos of
TNO, the Netherlands, and Helmut Künzel of the Fraunhofer Institut für Bauphysik
(IBP), Germany, showed the importance of experimental work and field testing
to understand building performance, while the late Lars Erik Nevander of Lund
University, Sweden, taught that solving problems in building physics does not
always ask complex modelling, mainly because reality in building construction is
much more complex than any model can simulate.

During the four decades at the Unit of Building Physics and Sustainable Con-
struction within the Department of Civil Engineering of the KU Leuven, several
researchers, then PhD-students, got involved. They all contributed by the topics
chosen to the advancement of the research done at the unit. Most grateful I am to
Gerrit Vermeir, my colleague from the start in 1975 and professor emeritus now,
to Staf Roels, Dirk Saelens, Hans Janssen and Bert Blocken, who succeeded me as
professors at the unit.

The experiences gained as a structural engineer and building site supervisor
for a medium-size architectural office the first 4 years of my career, as building
assessor during some 50 years, as researcher and as operating agent of four IEA,
Executive Committee on Energy in Buildings and Communities Annexes forced
me to rethink the engineering-based performance approach each time again. The
many ideas exchanged in Canada and the USA with Kumar Kumaran of NRC, the
late Paul Fazio of Concordia University in Montreal, Bill Brown, William B. Rose of
the University of Illinois in Urbana-Champaign, Joseph Lstiburek of the Building
Science Corporation, Anton Ten Wolde and those participating in ASHRAE TC 1.12
‘Moisture management in buildings’ and TC 4.4 ‘Building materials and building
envelope performance’ were also of great value.

Finally, I thank my family, my wife Lieve, who managed living together with a busy
engineering professor, our three children, our children in law and our grandchildren.

Leuven, October 2023 Hugo S.L.C. Hens
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2.2.3 Other Properties

2.2.3.1 Mechanical
Due to their very high porosity, insulation materials only have limited strength and
stiffness. When loaded, many behave like mattresses. The low stiffness also incurs
creep, relaxation and sometimes instability. Through that, insulation materials
are hardly suited for load-bearing functions. Of course, some applications require
mechanical performance. Insulation in floors and foundations needs enough com-
pressive strength, and insulation in sandwich panels needs enough shear strength.

2.2.3.2 Moisture
Most insulation materials are non-hygroscopic. The quite large cells in fact are
limiting the specific surface that could adsorb vapour, while capillary condensation
requires nearly 100% RH. Closed-cell insulations are even impervious to water.
Limited vapour diffusion across an insulation material and hardly any conden-
sation risk in the cells themselves require a high vapour resistance factor, which
again favours the closed-cell types. Fibrous insulation materials instead are really
vapour-permeable, pervious to water and only non-capillary if the binder used
is hydrophobic. Whether moist insulation materials lose strength and stiffness,
degrade biologically or rot depends on the matrix material.

2.2.3.3 Air
Good air tightness requires closed cells. No problem with foams. Fibrous insulation
materials instead are extremely air-permeable.

2.2.3.4 Temperature, IR and UV
The resistance against IR and UV depends on the type of matrix material. Organic
and synthetic insulations may not behave that well, while inorganic ones hardly
suffer.

2.2.3.5 Fire
The type of matrix material is again responsible. The organic and synthetic insulat-
ing foams could be flammable.

2.2.4 Insulating Building Materials

2.2.4.1 How Characterized?
Insulating building materials combine quite a low thermal conductivity when dry
with an acceptable load-bearing capacity. To characterize them, the following sched-
ule is used:

Short description

Properties Density, thermal, hygric, air, strength and stiffness
Behaviour Under mechanical load, sensitivity to temperature, IR and UV, under

moisture load, when exposed to fire, other if relevant
Application Where and how
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1 2

3

Figure 2.1 Perforation patterns in quick building bricks: (2) and (3) are better than (1).

2.2.4.2 Lightweight Brick Masonry
Getting brick masonry with high thermal resistance requires large, low-density
bricks that combine a light potsherd with optimal perforation patterns (Figure 2.1).

Being large gives the coupled benefit of fewer joints per m2 to be filled with insu-
lating mortar. Of course, extra thickness is also helpful. As for the size, after World
War II, quick building bricks, L×W ×H = 29× 14× 14 or= 29× 19× 14 cm stepwise
replaced the traditional 19× 9× 6.5 cm massive brick. A lighter potsherd is obtained
by adding sawdust or polystyrene pearls to the clay during mixing. When fired, the
sawdust carbonizes and the polystyrene sublimates. The result is a cloud of macro-
pores lowering the density considerably. The staggered top–down perforations are
at the same time elongating the transmission path, while in the insulating mortar,
perlite or vermiculite granules replace a part of the sand normally used.

2.2.4.2.1 Properties

Density Between 750 and 880 kg/m3. Dense brickwork weighs up to
2000 kg/m3

Thermal
Specific heat capacity Dry 840 J/(kg K), independent of density
Thermal resistance 0.5 m2 K/W for a 14 cm thick lightweight quick building brick

wall with a density of 900 kg/m3, whereas a 14 cm normal quick
building brick wall only gives 0.28 m2 K/W. Some 29 cm-thick
extra-lightweight quick-building brick walls may even give
1.7 m2 K/W.

Hygric
Moisture content Bricks are hardly hygroscopic.
Diffusion thickness Due to badly filled joints and microcracks around the bricks,

any masonry mostly shows a lower diffusion thickness than the
brick has. An estimate is 𝜇 ≈ 5d, with d the wall thickness in m.

Capillary water
absorption coefficient

From very moderate (0.05 kg/(m2 s0.5)) to high (0.8 kg/(m2 s0.5)),
depending on the brick’s porous structure.



12 2 Materials for a Correct Hygrothermal Performance

Figure 2.2 Aerated concrete: blocks and an industrial premise, built with elements.

2.2.4.2.2 Application Lightweight quick-building bricks are well suited as inner
leaf of cavity walls. When used for massive walls, a rain-tight outside render is neces-
sary. Anyhow, looking at the actual requirements, their thermal conductivity is too
high to replace thermal insulation. Also not negligible are the embodied energy and
CO2. Happily, service life can easily pass a century.

2.2.4.3 Lightweight Concrete, Aerated Concrete
A step towards insulating concrete consisted of replacing the gravel normally used by
furnace slag, expanded clay, perlite or polystyrene pearls. Density, apparent thermal
conductivity, strength and stiffness dropped, while shrinkage and creep increased.
Anyhow, much more effective is to skip any addition and use gas formation to foam
the sand/mortar mixture in an autoclave. The result is aerated concrete, thermally
by far the best and available in 59.5× 29.5× 29.5 cm3 large blocks or in ready-to-use
façade and roof elements (Figure 2.2). Even more, its porous structure allows sawing
and milling.

2.2.4.3.1 Properties

Density While ‘normal’ concrete weighs ≈ 2200 kg/m3, for expanded
clay concrete it is 1600 kg/m3 if structurally applied and
650 kg/m3 if used otherwise. For polystyrene concrete, it is
260 kg/m3 when used as post-fill to 800 kg/m3 for other uses,
while for aerated concrete, it is 350–800 kg/m3.

Thermal
Specific heat capacity Dry 840 J/(kg K), whatever the density may be.
Thermal conductivity For normal concrete, standards give 1.6–2 W/(m K) as ‘dry

value’, measurements gave 2.6 W/(m K).
For 600<𝜌 < 1200 kg/m3 heavy expanded clay concrete, it
drops to:
𝜆 = 0.024 exp(0.0027𝜌).

250<𝜌< 800 kg/m3 heavy olystyrene concrete gives:
𝜆 = 0.041 exp(0.00232𝜌)

450<𝜌< 620 kg/m3 heavy aerated concrete guarantees:
𝜆 = 0.12+ 0.000375𝜌
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Hygric
Moisture content The cement gel turns concrete into a hygroscopic material
Diffusion thickness Drops with decreasing density and increasing moisture content.
Capillary water
absorption coefficient

The second digit behind the decimal point differs from zero.

Strength and stiffness Despite its low density, constructing 4–5 storey-high buildings
with aerated concrete blocks is doable.

2.2.4.3.2 Behaviour

Under moisture load The lower the density, the higher the hygric shrinkage. The
reason is less particle resistance when passing from gravel over
expanded clay and polystyrene pearls to no particles at all in
aerated concrete! When building with aerated concrete blocks,
due to the 200–250 kg/m3 production moisture they contain,
proper detailing is a challenge.

Exposure to fire The combination of non-combustible, insulating and low thermal
expansion gives aerated concrete walls excellent fire resistance.

2.2.4.3.3 Application Air-dry, 30 cm-thick aerated concrete walls have a
U-value< 0.5 W/(m2 K). Before the values mandated by law turned tougher,
30 cm-thick outside wall and roof elements required no extra thermal insulation,
which was preferred when building industrial premises.

2.2.5 Insulation Materials

2.2.5.1 How Characterized?
The indication ‘insulating’ presumes a material having a dry thermal conductivity
(𝜆dry) below 0.07 W/(m K). In addition to the schedule given for insulating build-
ing materials, figuring as an extra characteristic is the type of material forming the
pore-enclosing matrix:

Matrix Matrix material Acronym

Organic Cork
Cellulose fibre
Sea grass, sheep wool, straw, flax

C
Cel

Inorganic Glass fibre
Mineral wool
Cellular glass
Perlite, vermiculite

MW
MW
CG

Synthetic Expanded polystyrene
Extruded polystyrene
Polyurethane foam
Polyisocyanurate foam
Phenol, ureumformaldehyde, polyethylene foam

EPS
XPS
PUR
PIR

Mixed Pressed perlite boards PPB
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Figure 2.3 Cork insulation.

Quite different from these insulation materials are radiant barriers, transparent
(TIM) and vacuum insulation (VIP). Only those printed in standard letters are dis-
cussed with reference to the schedule given for insulating building materials.

2.2.5.2 Cork
The source of cork is the bark of the cork oak. After stripping and grinding it, the
grains so formed are autoclaved using steam at 350 ∘C. While expanding, moulds
and bacteria get killed, VOCs evaporate and the resin binds the grains into blocs
that, once cooled, are cut to size. An alternative consists of drying the grains by heat-
ing them, then drenching them in bitumen and pressing the resulting mixture into
boards (Figure 2.3).

2.2.5.2.1 Properties

Density 80–250 kg/m3. Quite high for an insulating material.

Thermal
Specific heat capacity Dry≈ 1880 J/(kg K) independent of density
Thermal conductivity For a density of 111 kg/m3 and 𝜃 = 0–40 ∘C:

𝜆 = 0.042 (1+ 1.8× 10−3
𝜃)

For a volumetric moisture ratio of 0–6% m3/m3:
𝜆 = 0.042 (1+ 4.3× 10−2Ψ)

Hygric
Moisture content Due to its organic origin, cork is hygroscopic and

somewhat capillary.
Vapour resistance
factor

Between 5 and 20. Drops with higher moisture content
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Air Its open structure makes cork air permeable
Strength and stiffness Cork has a low compressive strength and is quite deformable.

0.05 MPa pressure gives an instantaneous strain of 1.5%

2.2.5.2.2 Behaviour

Under mechanical
load

Cork creeps. 1 day subjected to 0.05 MPa sees the strain increasing
from 1.5% to 5%. For 145 kg/m3 dense boards, 1 day subjected to
0.11 MPa ends with 10% strain. Stress allowed is 1/3 of the 10%
strain value (𝜎10)

Sensitivity to
temperatures, IR
and UV

Here, cork scores quite good. The thermal expansion coefficient is
rather high (±40 × 10−6 K−1) but the resistance against low and
high temperatures is excellent. UV only causes some
discolouration.

Moisture load Like all organic materials, cork swells when wet and shrinks when
drying. If humid for a long time, it turns mouldy and may rot.

Exposure to fire Cork burns

2.2.5.2.3 Application Although cork was well suited as an insulating material for
low-slope roofs and cold stores, synthetic foams have taken over. Never apply cork
where a high RH is likely! Using it to upgrade airborne and contact sound insulation
makes no sense, as the material is too stiff for that. Anyhow, heavy boards perform
well as vibration dampers.

2.2.5.3 Cellulose
Are the source of cellulose: unsold newspapers. To limit the combustibility and
mould sensitivity, the fibres are mixed with borax salts. Cellulose is applied as loose
fill (Figure 2.4 left) or in the form of dense boards.
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Figure 2.4 Left: cellulose fibre; right: its sorption/desorption graph.



16 2 Materials for a Correct Hygrothermal Performance

2.2.5.3.1 Properties

Density 24–60 kg/m3, for loose fill depending on the spraying pressure

Thermal
Specific heat capacity Dry ≈1880 J/(kg K), independent of density
Thermal conductivity Air dry:

𝜆 =
d∕1000 (1 + 0.00289(𝜃 − 24)

(0.205 + 0.0247d) − (0.00201 + 0.0000143d)𝜌
with d thickness in mm, 𝜃 temperature in ∘C, and 𝜌 density in
kg/m3

Hygric
Moisture content Cellulose fibres are hygroscopic and somewhat capillary. The

borax salts added increase sorption; see Figure 2.4 right.
Vapour resistance
factor

<1.9 for a density of 50 kg/m3. Drops with increasing moisture
content. The low value reflects the fibrous structure.

Air The fibrous structure makes cellulose air permeable,
ka ≈ 1.6×10−3 s.

Strength and stiffness Loading loose fill beyond its weight is excluded.

2.2.5.3.2 Behaviour

Under mechanical
load

At low density, static and dynamic forces induce irreversible
settling. Measured is (a time in years):
s = 100𝜌{1/a+ t/b+ [1− exp(−dt)]/c} with:

𝜌 a b c d
kg∕m3 kg∕m3 kg a∕m3 kg∕m3 a−1

30 1.50 6827.9 247.2 1.87
35 1.75 8018.3 288.4 1.87
40 2.00 9165.9 329.6 1.87

Under moisture load Cellulose swells and shrinks hygrically. Wet spray induces drying
shrinkage. At moisture contents above 20% kg/kg, the fibres clog
together and may rot

Exposure to fire Despite the borax salts added, cellulose remains combustible.
The very thick layers, often applied in passive houses, form a real
hazard for firefighters

Other Cellulose dust may induce respiratory problems. During
spraying, a mask must be worn. Borax salt has its own drawbacks.
A simple exposure can cause respiratory problems and skin
irritation. Ingestion can cause gastrointestinal distress: nausea,
vomiting, abdominal pain and diarrhoea. Effects on the vascular
system and the brain with headaches and lethargy as symptoms
are less frequent. Signs of poisoning are a beefy red skin rash
affecting the palms, soles, buttocks and scrotum. When severely
poisoned, erythematous and exfoliative rash, unconsciousness,
respiratory depression, and renal failure may happen.



2.2 Materials for Thermal Insulation 17

Figure 2.5 Glass fibre and mineral wool boards.

2.2.5.3.3 Application Dry or wet-sprayed cellulose is presented as an alternative
for glass and mineral fibre. The application includes insulating timber-frame walls,
insulating low-slope roofs by filling the bays between the purlins and insulating attic
floors. Dense boards may be used in pitched roofs. Cellulose should not be applied
in cavities exposed to high RH such as in cavity walls.

2.2.5.4 Glass and Mineral Fibre
The basic material for glass fibre is recycled glass, and for mineral fibre diabase stone.
Both are melted, after which a spinning head produces the fibres having a diameter
<10 μm. While falling down on a conveyor belt transporting the facings for the blan-
kets, the bats and, if needed, the boards, they pass a phenol or silicon binder spray.
The filled belt then enters a heated press where the binder hardens and the blankets,
bats and boards get their shape, after which they are cut to size. Final products range
from loose fill, over blankets and bats to soft, semi-dense and dense boards. At first
sight, glass and mineral fibre look alike, but glass is amorphous and the fibres long
and ordered, while diabase stone is crystalline and the fibres short and unordered
(Figure 2.5).

2.2.5.4.1 Properties

Density For glass fibre 10–150 kg/m3, for mineral fibre 30–190 kg/m3

Thermal
Specific heat
capacity

Same value as for stony materials, dry± 840 J/(kg K)

Thermal
conductivity

For glass fibre at 20 ∘C: 𝜆 = 0.0262+ 5.6× 10−5
𝜌+ 0.184/𝜌, for

mineral fibre at 20 ∘C: 𝜆 = 0.0331+ 3.2× 10−5
𝜌+ 0.221/𝜌. The

temperature impact is largest for low densities. For the same
density, glass fibre has the lowest 𝜆-value. Upgraded
manufacturing even gave 0.032 W/(m K).

Hygric
Moisture content Both materials are hardly hygroscopic. Without a hydrophobic

binder, the boards show some capillarity. With a hydrofobic
binder, they withstand small water heads.

Vapour resistance
factor

Due to their fibrous nature, very low: 1.2–1.5.
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11

Concrete Panel and Sheet-Metal Outer Walls

11.1 In General

Masonry outer walls, as discussed in the previous three chapters, were and are still a
reference in residential construction. For office buildings and other non-residential
complexes, concrete panels and, mainly for industrial premises, sheet metal choices
often figure as consciously chosen outer wall assemblies. This chapter first looks at
concrete panel outer walls, to move then to sheet-metal outer walls.

11.2 Concrete Panels

11.2.1 Common Assemblies

Considered are outer walls composed of factory-made storey-high concrete panels.
The number of different types, the number per type and their complexity fixes the
investment. Truck transport in turn limits their dimensions and the crane’s lifting
capacity their weight. Types applied are either sandwich panels with an outer leaf in
facing concrete, an inner leaf in normal concrete and an insulation layer in between,
or monolithic panels, after mounting either insulated inside or outside (Figure 11.1).

11.2.2 Performance Checks

11.2.2.1 Remark
Monolithic panels, insulated inside- or outside, perform as massive walls insulated
this way. Therefore, in what follows, the discussion is paid to sandwich panels only.

11.2.2.2 Structural Integrity
Assembling heavy panel façades is done floor by floor (Figure 11.2). Load-bearing
façades composed of heavyweight panels have to withstand related forces and must,
once all mounted, bear the façade’s own weight and part of the own weight, dead
weight and useful load of the floors supported. In low-rises, they must also guaran-
tee wind stiffness, which requires a rigid coupling to the floors. In medium and high
rises, stiff cores take over wind stability, so the panels there only have to bear verti-
cal loads. During transport and mounting, the two leaves composing the panels may

Performance-Based Building Design: From Below Grade to Floors, Walls, Roofs, Windows and Finishes,
Second Edition. Hugo Hens.
© 2024 Ernst & Sohn GmbH. Published 2024 by Ernst & Sohn GmbH.
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(a) (b) (c)

Figure 11.1 (a) Sandwich panel, (b) monolithic panel insulated inside, (c) monolithic panel
insulated outside.

not shift or rotate compared to each other. To exclude this, the first choice was cou-
pling them along the perimeter with a concrete edge. However, the thermal bridge
so created had such an impact on the thermal transmittance that, with the increase
in requirements, another coupling solution was introduced: a hollow stainless-steel
cylinder in the centre of gravity of the panels together with ties at the perimeter
(Figure 11.2). If, for any reason, the cylinder had to be included below that centre,
then above, close to the perimeter, a coupler had to be added.

In non-load-bearing façades, the panels only have to bear their own weight and
must be able to withstand the assembling forces and the local push and pull of the
wind. Mounting here starts once the load-bearing structure is ready. The panels with
supporting strips down and strap anchors up are fixed storey-wise using the struc-
tural edge beams as strip support and the loadbearing edge columns or the structural
edge beams above as strap anchor fixings. While the strips have to endure bending
and shear, the strap anchors must resist tension. Assembling requires mounting each
panel perfectly vertically and in a way that zigzagging horizontally is excluded, that,
by using adjusting screws in the supporting strips and strap anchors (Figure 11.3).

11.2.2.3 Building Physics: Heat, Air and Moisture
11.2.2.3.1 Airtightness At panel level, airtightness is normally guaranteed. If nev-
ertheless leakage is noted, badly sealed joints between panels are the most likely
cause. Caring for correct jointing in between and at floor and ceiling level is therefore
a challenge when mounting panel outer walls.

11.2.2.3.2 Thermal Transmittance Should the insulation form an uninterrupted
layer, then a clear wall thermal transmittance of 0.4–0.1 W/(m2 ⋅K) will require
the insulation thicknesses of Table 11.1. Anyhow, the thicker the boards used, the
higher the load the leaf couplers must withstand, the more voluminous the panels
become and the less net area is left if the outer dimensions must remain the same.



11.2 Concrete Panels 253

Cast concrete edge Hollow stainless steel cylinder in the centre
of gravity, ties at the perimeter

Figure 11.2 Top: building floor by floor; below: sandwich panels: both leafs coupled.

Strap anchor

Panel support strip with

adjustment screw

Figure 11.3 Non-load-bearing panels, mounting.

Table 11.1 Insulation thickness (sandwich panel, outer leaf 8 cm, inner leaf 14 cm thick).

Uo-value Insulation thickness (m)

W/(m2 ⋅K) MW EPS XPS PUR

0.4 0,08 0,08 0,07 0,05
0.2 0,17 0,18 0,15 0,11
0.1 0,35 0,37 0,31 0,22
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Figure 11.4 Cast concrete perimeter edge, isotherms (purple = coldest, red = warmest).

Table 11.2 Whole wall thermal transmittance of a 3.6 m tall and 2.4 m wide panel.

Wall, 6 cm concrete/MW
6 cm concrete Uo W/(m2 ⋅K) 𝝍 W/(m ⋅K) U W/(m2 ⋅K) 𝚫U/Uo (%)

Cast concrete edge all around
MW, d = 8 cm 0.45 0.55 1.21 169
MW, d = 12 cm 0.31 0.51 1.02 229
MW, d = 16 cm 0.24 0.48 0.90 275

𝛘, W/K

Central stainless-steel hollow cylinder filled with insulation (1st number), edge ties
(2nd number)

MW, d = 8 cm 0.45 0.15/0.044 0.55 22
MW, d = 12 cm 0.31 0.13/0.031 0.38 23
MW, d = 16 cm 0.24 0.11/0.024 0.29 21

However, for panels with the perimeter coupled by edges in cast concrete, related
linear thermal bridging turns the clear wall values listed in the table into meaning-
less numbers. Figure 11.4 shows the isotherms at such an edge, while Table 11.2 lists
the linked whole wall thermal transmittances for storey-high panels. Also, joints
between carelessly embedded insulation boards figure as linear thermal bridges.
Even a central stainless-steel hollow cylinder, surely when unwantedly filled with
concrete instead of insulation, and the ties as couplers along the perimeter induce
some local thermal bridging. The impact is also given in Table 11.2.

The lower the clear wall value, the more cast concrete perimeter edges affect the
insulation efficiency. Hollow cylinders at the point of gravity and ties along the
perimeter do noticeably better, given the much smaller difference in % between
related clear and whole wall U-values.
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Table 11.3 Sandwich panels: temperature damping, dynamic thermal resistance,
admittance.

Temperature damping Dynamic thermal resistance AdmittancePanel, out 8 cm,
in 14 cm concrete
Insulation — Time shift, h m2 ⋅K/W Time shift, h W/(m2 ⋅K) Time shift, h

6 cm EPS 40.9 9.2 6.2 7.9 6.6 1.3
19 cm EPS 120.8 10.1 18.3 6.6 6.6 1.3

11.2.2.3.3 Transient Response Table 11.3 lists the temperature damping, the
dynamic thermal resistance and the admittance on a one-day basis for a sandwich
heavyweight panel insulated with an uninterrupted 6 cm (U = 0.57 W/(m2 ⋅K))
or 19 cm (U = 0.2 W/(m2 ⋅K)) thick EPS layer. As temperature damping largely
exceeds the value 15, the dynamic thermal resistance outperforms the steady-state
thermal resistance and the admittance scores much higher than half the surface film
coefficient inside (7.8 W/(m2 ⋅K)), the transient response looks excellent. However,
as such panels were often used for office buildings, looking at the large glazed
surfaces in the façade and indoors the hung ceilings, raised floors and lightweight
partitions present, their use per floor as panel strips finishing the façade under the
row of windows hardly helped in tempering overheating.

11.2.2.3.4 Moisture Tolerance
Wind-driven rain: As concrete has a really low capillary water absorption coeffi-

cient (0.018 kg/(m2 ⋅ s0.5)), the time needed for rain hitting the panels (tr) to start
running-off fingering is really short:

tr = 0.000162∕g2
ws (s) (11.1)

where gws is the wind-driven rain intensity (kg/(m2 ⋅ s)). That fingering is a main
reason why, after some years, panels may start turning dirty. In fact, on spots
where run-off stays for a while, dust is taken with it to be deposited elsewhere
along the façade. Run-off also loads the joints around panels and windows, which
is another reason for excellent sealing to be crucial.

Mould and surface condensation: For panels with clear wall thermal transmit-
tances ≤0.4 W/(m2 ⋅K) and no cast concrete perimeter edges as coupler, the tem-
perature ratio on the inner face will largely pass 0.7, even behind cupboards. The
mould and surface condensation risk therefore remains well below 0.05. Instead,
with these as couplers, things may go wrong; see ‘thermal bridging ’.

Interstitial condensation: No issue, mainly because the often-humid concrete
outer leaf is more vapour permeable than the air-dry concrete inner leaf. The
panels so reflect the correct design. If a diffusion-based calculation should
nonetheless give some winter deposit on the backside of the outer leaf, in reality
this will be nothing more than some increase in the concrete’s hygroscopic
moisture content.
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11.2.2.3.5 Thermal Bridging If the lowest temperature ratio on the inside face of a
panel with both leaves coupled at the perimeter with cast concrete edges drops below
the value of the glazing used, then mould will become a pending risk. Instead, for
well insulated sandwich panels having both leafs coupled with a hollow cylinder
and ties, the lowest temperature ratio hardly deviates from the value the clear wall
thermal transmittance gives, meaning mould is not an issue.

11.2.2.4 Building Physics: Acoustics
The airborne sound transmission loss of concrete sandwich panels is really high. But
again, the windows are what fix the façade’s sound insulation.

11.2.2.5 Durability
As Table 11.4 underlines, even small insulation thicknesses suffice to thermally load
the inside- and outside leaf quite differently. A cast concrete coupled perimeter edge
may consequently induce important stresses. To give an indication, assume shrink-
age after manufacturing is relaxed by storing the panels in a 10 ∘C warm, humid
environment. Once mounted on site, in a temperate climate the outer leaf can warm
up to 48 ∘C during a hot day, while the inner leaf will remain at 23.4 ∘C. Their cou-
pling will cause tension in the inner leaf with stresses touching 3.4 MPa, a value
concrete fortunately can cope with.

During a really cold winter day, both leafs will cool down, the inner to 14.6 ∘C and
the outer to −14.4∘C. It’s the outer that will experience up to 6.7 MPa tensile stress
now, a value beyond the concrete’s tensile strength yet, which makes spread cracking
likely. That may expose the reinforcement bars in the outer leaf to the outdoors, as
a result of which increased wetness and easier carbonisation will accelerate their
corrosion, whereby related swelling may spall the concrete cover above.

Once the initial shrinkage, kept moderate by keeping the concrete wet, has worn
off, contrary to the thermal load, the hygric load still to be expected becomes mini-
mal. As said, concrete is hygroscopic but hardly capillary. In case thermal cracking
could be avoided by embedding a welded steel mesh in both leafs during production,
then rain sucking by the outer leaf will be too slow and the rainy periods too short
to ever get it capillary wet over its whole thickness. And even if, the difference in
hygroscopic moisture content remains too small to cause any problematic swelling.

Table 11.4 Manufactured sandwich panel: in- and outside leaf, temperature load.

Temperature difference across the leaf (∘C)

Panel, from out- to
inside: 8 cm concrete
EPS14 cm concrete Leaf

Mean, between
a cold winter and
hot summer day

During a cold
winter day

During a hot
summer day

EPS15, d = 6 cm Inner 9.5 0.6 0.8
Outer 61.5 19.7 27.7

EPS15, d = 19 cm Inner 7.2 0.2 0.2
Outer 62.5 20.0 29.1
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11.2.2.6 Fire Safety
Even with EPS, the fire resistance of sandwich panels scores high. Flame spread
along panelized façades anyhow could become an issue in case of glass rupture.
Therefore, having per floor in the façade panels strips with a height ≥1 m above
the glazing below is mandatory.

11.2.2.7 Maintenance
To minimize soiling, hindering rain run-off should guide panel design: not flat,
though with some relief. Although this could accelerate dirt deposits, related soiling
will look more equal then. Regular cleaning, however, will remain necessary. The
hygroscopicity of concrete also facilitates algae growth, so it demands regular
treatment with extirpating products. Repairing a spalled concrete cover in outer
leafs requires removing the cover and treating the freed bars with a corrosion
inhibitor, after which the cover must be repaired with a suitable mortar.

11.2.3 Design and Execution

To make a façade built with heavyweight sandwich panels affordable requires a mod-
ular design that limits the panel shapes needed and makes the number per shape
as large as possible. Suitable as insulation materials are dense mineral wool (MW),
expanded polystyrene (EPS), extruded polystyrene (XPS), polyurethane and polyiso-
cyanurate (PUR/PIR) boards. Coupling both leafs so that any rotation compared to
the other is excluded requires corrosion resistant attachments that ensure strength,
stiffness, shape retention and minimal thermal bridging. As shown, the best is a hol-
low stainless-steel cylinder at the point of gravity and ties all around at the perimeter.
A well scaled concrete with a low water/cement factor cured in a humid environ-
ment and welded steel meshes in both leafs with enough concrete cover will curb
aging. And, of course, if the design goes for a panelized façade, then it has to fulfil
all requirements mandated or requested by the client.

11.3 Sheet-metal Options

11.3.1 Common Assemblies

Most sheet-metal outer wall panels or elements are either plate, sandwich, cellular
or clad based. Plates are composed of a corrugated inner and outer sheet with
insulation in between. Sandwiches have the insulation glued between two metal
sheet covers. Cellular refers to elements composed of vertical or horizontal metal
boxes filled with insulation. Clad types finally collect all metal sheets used as
outside linings (Figure 11.5).

11.3.2 Performance Checks

11.3.2.1 Structural Integrity
Sheet-metal panels or elements are, by definition, non-load-bearing. A structural
evaluation only requires a strength and stiffness control looking at their own weight,
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(a) (b) (c) (d)

Figure 11.5 Sheet-metal elements: (a) plate with vertical profiling, (b) sandwich,
(c) cellular, (d) clad based.

the push and pull of the wind and the possible structural impacts of the thermal
stress experienced. The fastening systems used must, of course, ensure a safe
transfer of these loads to the building’s structural system, but they should anyhow
simultaneously allow some limited movement.

11.3.2.2 Building Physics: Heat, Air and Moisture
11.3.2.2.1 In General Outer walls made of sheet-metal elements struggle with air-
tightness and thermal bridging, the last due to the high λ-value of the metal used.
The transient thermal response leaves nothing to desire as all are too lightweight for
that, while the risk of getting interstitial condensation may score high, surely if too
air-permeable. The way metal-sheet clads behave from a heat, air, moisture perspec-
tive largely depends on the material used as thermal insulation and which inside
leaf, if any, is applied.

11.3.2.2.2 Air Tightness A separate sheet-metal element is perfectly airtight. The
problem is the joints. They can be unexpectedly air permeable as Table 11.5 shows
for cellular elements.

Carelessly mounted insulation may enable and ease air looping, which will
strongly degrade the thermal quality left. Inside air outflow could also blow-up the
deposit interstitial condensation cares for.

Table 11.5 Air permeance of cellular sheet-metal outer wall systems (Ka = aΔPb−1
a ).

Cellular element, boxes filled with 80 mm mineral wool Air permeance, kg/(m2 ⋅ s ⋅Pa)

a b−1
1. No special measures 7.9 ⋅ 10−5 −0.003
2. Screw eyes caulked 6.7 ⋅ 10−5 −0.101
3. As 2, joints between boxed taped 1.6 ⋅ 10−5 −0.084
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