

Edited by F. Garde, J. Ayoub, L. Aelenei, D. Aelenei, and A. Scognamiglio

Solution Sets for Net Zero Energy Buildings

Feedback from 30 Net ZEBs worldwide

Edited by
François Garde
Josef Ayoub
Daniel Aelenei
Laura Aelenei
Alessandra Scognamiglio

Solution Sets for Net Zero Energy Buildings

Feedback from 30 Net ZEBs worldwide

Table of Contents

About the editors	
List of Contributors IEA Solar Heating and Cooling Programme	
Foreword	
Acknowledgments	
Introduction	
Why another book on net zero energy buildings?	
What is a net zero energy building?	
IEA SHC Task 40/EBC Annex52: Towards net zero energy	
solar buildings	
Target audience: Designers and their clients	
Structure of this book	
References	
Net zero energy building design fundamentals	
Net zero energy building definition and classification	
Physical boundary	
Balance boundary	
Weighting system	
Normalization	
Balance period	
Balance types	
Further requirements.	
Net ZEB case studies: building, climate and measure classific	
Climate classification	
Building type classification	
Net ZEB measure classification	
Net-zero energy strategies and measures	
Passive approach strategies	
Passive measures	
Energy efficiency strategies	
Energy efficiency measures	
Renewable energy system strategies	
Renewable energy measures	
Summary: solution sets	
Net ZEB solution sets and associated categories	
Other considerations of net ZEB design and solution sets	
References	
Net ZEB case study buildings, measures and solution	sets
Introduction	
The case study buildings	
Residential buildings	

VI Table of Contents

3.3	Net ZEB measures	51
3.4	Net ZEB measures in case study buildings	53
3.4.1	Passive measures	54
3.4.2	Energy efficiency measures	65
3.4.3	Renewable energy measure	74
3.5	Net ZEB measure summaries and solution sets	87
3.5.1	Net ZEB measures deployment summaries	87
3.5.2	Solution sets in residential buildings	100
3.5.2		100
3.3.3	Solution sets in non-residential buildings	
	References	101
4	Net ZEB design opportunities and challenges	103
4.1		103
4.1	Introduction Architectural design and the net ZEB objective	103
4.2.1	<u> </u>	
	Energy balance and building shape	104
4.2.2	Renewable energy systems design	108
4.3	The integrated design process	113
4.3.1	The importance of the brief	113
4.3.2	The role of the architect	114
4.3.3	Organizational design decision making	114
4.3.4	Integrated design process and net ZEBs.	115
4.4	The influence of renewable energy systems on building design	117
4.4.1	Envelope integrated supply options: photovoltaics vs. solar thermal	118
4.4.2	Photovoltaics	121
4.4.3	Solar thermal	123
4.4.4	Photovoltaic – Thermal combined systems	124
4.4.5	Wind turbines	126
4.5	New design opportunities and existing barriers	129
4.5.1	The right to sunshine	129
4.5.2	A new idea of building physical footprint	130
4.5.3	Listed buildings	132
4.5.4	Renovation of post- war period buildings	132
4.6	The appearance of future net ZEBs	133
4.6.1	Net ZEBs shapes and performances: a typological repertoire	133
4.6.2	A new aesthetics driven by net ZEBs	141
4.7	Concepts for future cities	141
4.7.1	Urbanization versus sprawl: towards net zero energy communities?	142
4.7.2	Net ZEBs, smart grids and smart cities	143
7.7.2	References	147
	References	14/
5	Monitoring and post-occupancy evalution of Net ZEBs	153
5.1	Introduction	153
5.2	Why monitor building energy and comfort?	154
5.2.1	Interests and issues related to monitoring buildings	154
5.2.1		156
	Monitoring to improve overall building performance	
5.3	A standard monitoring protocol for Net ZEBs	158

Table of Contents VII

5.3.1 5.3.2	Monitoring system planning	
5.3.3	Monitoring system installation.	
5.3.4	Monitoring system operation	
5.4	Building energy monitoring protocols	
5.4.1	Energy monitoring protocol	
5.4.2	Case study: energy monitoring at ENERPOS	
5.5	Indoor environmental quality monitoring and post-occupancy evaluation	
5.5.1	Indoor environmental quality (IEQ) monitoring protocol	
5.5.2	Case study: comfort monitoring at ENERPOS	
5.6	Experience from monitoring at 5 Net ZEBs	
5.6.1	Monitoring at 5 case study buildings	
5.6.2	Building management system	
5.6.3	Energy results	
5.6.4	Comfort measurements	
5.6.5	General observations on occupant behavior	
	References	
6	Foodbook from building designers, angineers and accuments	
6 .1	Feedback from building designers, engineers and occupants	
6.2	Introduction	
6.2.1	Lessons learned from the design process General observations from the design process	
6.2.2		
6.2.3	Design hierarchy	
6.3	Motivations	
6.3.1	Lessons learned from building designers, engineers and occupants	
6.3.2	Passive design	
6.3.3	Energy efficiency	
6.3.4	Renewable energy	
6.4	Recommendations.	
6.4.1	Occupant consideration in the design and operation of Net ZEBs	
6.4.1	Effects of the occupant behavior on energy use and comfort	
6.4.3		
	Occupant behavior can hinder building performance.	
6.4.4	Lessons from occupant behavior in Net ZEBs	
	References	
	Glossary	
	Index	

Foreword

This work was produced in the context of a joint collaboration between approximately 75 national experts from 19 nations in Europe, North America, Oceania, and Southeast Asia of the International Energy Agency (IEA), under the framework of the IEA Solar Heating and Cooling (SHC) and Energy in Buildings and Communities (EBC) Technology Collaboration Programs. The joint SHC Task 40/EBC Annex 52 (T40A52) "Towards Net-Zero Energy Solar Buildings" sought to study current netzero, near-net-zero and very low energy buildings and to develop a common understanding of a harmonized international definitions framework, tools, innovative solutions, and industry guidelines to support the conversion of the Net ZEB concept from an idea into practical reality in the marketplace. This Task/Annex pursued optimal integrated design solutions that provided good indoor environment for both heating and cooling situations. The process recognized the importance of optimizing a design to meet the functional requirement, reducing loads, and designing energy systems that pave the way for seamless incorporation of renewable energy innovations, as they become cost effective. To achieve these results, the National Experts met twice annually at a hosting member country to coordinate the R&D activities and advance the work plan comprised of the following four major activities:

- 1) Subtask A dealt with establishing an internationally agreed understanding on Net ZEBs based on a common methodology. This was done by reviewing and analyzing existing Net ZEB definitions and data with respect to the demand and the supply side; studying grid interaction (power/heating/cooling) and time-dependent energy mismatch analysis; developing a harmonized international definition framework for the Net ZEB concepts considering large-scale implications, exergy, and credits for grid interaction (power/heating/cooling); and, developing a monitoring, verification and compliance guide for checking the annual balance in practice (energy, emissions, and costs) harmonized with the definition;
- 2) Subtask B aimed to identify and refine design approaches and tools to support industry adoption. This was done by conducting work along four major R&D streams: (i) in documenting and analyzing processes and tools currently being used to design Net ZEBs and under development by participating countries; (ii) assessing gaps, needs, and problems to inform simulation engine and detailed design tool developers of priorities for Net ZEBs; (iii) qualitative and quantitative benchmarking of selected tools; and (iv) selecting four case study buildings to conduct a detailed analysis of simulated/designed vs. actual performance, and proposing the redesign/optimization of these buildings;
- 3) Subtask C focused on developing and testing innovative, whole building net-zero solution sets for cold, moderate, and hot climates with exemplary architecture and technologies that would be the basis for demonstration projects and international collaboration. This was achieved by documenting and analyzing current Net ZEBs designs and technologies, benchmarking with near Net ZEBs and other very low energy buildings (new and existing), for cold, moderate, and hot climates considering sustainability, economy, and future prospects using a projects database, literature review, and practitioner input (workshops); developing and assessing case studies

XX Foreword

and demonstration projects in close cooperation with practitioners; investigating advanced integrated design concepts and technologies in support of the case studies, demonstration projects, and solution sets; and developing Net ZEB solution sets and guidelines with respect to building types and climate, and to document design options in terms of market application;

4) **Subtask D** was crosscutting work that focused on dissemination to support knowledge transfer and market adoption of Net ZEBs on a national and international level. This was accomplished by establishing a Net ZEB web page within the IEA SHC/EBC Programmes' framework and a database that can be expanded and updated with the latest projects and experiences; transferring the outputs (reports, sourcebooks, guidelines, other) to national policy groups, industry associations, utilities, academia, and funding programs; participating in national and international workshop, seminars, and industry exhibitions highlighting the results and activities of the Task/Annex contributing high-quality technical articles and features in journals to stimulate market adoption; and, establishing an education network of highly qualified people that will continue the work in the field in their future endeavors.

I am pleased to present the research results of Subtask C compiled in this volume of work entitled "Solution Sets from Net Zero Energy Buildings: Feedback from 30 Net ZEBs worldwide" as a major accomplishment in this field of research. Building energy design is currently going through a period of major changes driven largely by three key factors and related technological developments: (i) the increasingly widespread adoption in most OECD member countries and by influential engineering societies, such as ASHRAE, of net-zero energy as a long-term goal for new buildings; (ii) the need to reduce the peak electricity demand for buildings through optimal operation; and (iii) the need to efficiently integrate advanced energy technologies into buildings, such as photovoltaic/thermal systems, windows with semitransparent photovoltaic glazing, controlled shading/daylighting devices, and integrated thermal storage. This body of work encapsulates the many and varied lessons learned of designing, building and operating net-zero energy buildings by government research organizations, international and regional research centers, academia, and industry. I am confident this book will find many interested readers.

Josef Ayoub
Former Operating Agent, IEA SHC Task 40/EBC Annex 52
Senior Planning Advisor, Energy Science & Technology
CanmetENERGY | Natural Resources Canada | Government of Canada www.task40.iea-shc
E-mail: josef.ayoub@Canada.ca

3 Net ZEB case study buildings, measures and solution sets

Editors: Laura Aelenei, David Waldren, 2

Authors: Laura Aelenei, ¹ David Waldren, ² Daniel Aelenei, ³ Eduard Cúbi, ⁴ Kim Wittchen, ⁵ Jun-Tae Kim, ⁶

Contributors: Eike Musall, ⁷ Tobias Weiss, ⁸ François Garde, ⁹ Michael Donn, ¹⁰ and Aymeric Delmas ¹¹

3.1 Introduction

In this chapter, the data (buildings and measures) gathered from the *Task 40 Net Zero Energy Solar Buildings Research Project* is presented with detailed descriptions and summaries. As discussed in Chapter 2, the thirty case study buildings are partitioned into five groups by Climate and Building type (See Table 3.6). The measures deployed by these buildings are grouped by Building Requirement and this is not a strict partitioning as it is common that one measure contributes to meeting more than one requirement (e.g., BIPV/T deployed to address Electricity and Heating requirements). The case studies of the IEA SHC Task 40/EBC Annex 52 are portioned into groupings according to building types, climate efficiency measures.

The presentation begins with a summary description of the Case Study Buildings of this project including the selection criteria and geographic distribution. After this descrip-

¹Unidade de Energia no Ambiente Construído - UEAC, Laboratório Nacional de Energia e Geologia - LNEG, Estrada do Paço do Lumiar, Edifício Solar XXI, 1649-038 Lisboa, Portugal

²GROCON, 3 Albert Coates Lane, Melbourne, Victoria 3000, Australia

³Department of Civil Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

⁴Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

⁵Danish Building Research Institute, Aalborg University, Dr. Neergaards Vej 15, 2970 Horsholm, Denmark

⁶Department of Architectural Engineering & Graduate Program of Energy Systems Engineering, Kongju National University, 1223-24 Cheonandae-Ro, Cheonan, Chungnam Province 31080, Republic of Korea

⁷Bergische Universität Wuppertal, Faculty of Architecture, Building physics and technical services, Haspeler Straße 27, D - 42285 Wuppertal, Germany

⁸AEE INTEC, Feldgasse 19, 8200 Gleisdorf, Austria

⁹PIMENT Laboratory, Université de La Réunion, Campus universitaire Sud, 117 rue Général Ailleret, 97430 Le Tampon, La Réunion, France

¹⁰Victoria University of Wellington School of Architecture, PO Box 600, 139 Vivian St., Wellington, New Zealand

¹¹PIMENT Laboratory, Université de La Réunion, Campus universitaire Sud, 117 rue Général Ailleret, 97430 Le Tampon, La Réunion, France

tion, the thirty buildings are listed in two tables (Residential and Non-Residential) including size and energy data.

The bulk of this chapter consists of descriptions of each measure in the context of example Case Study building implementation. This measure presentation is organized by measure category (Passive, Energy Efficiency, Renewable Energy) and Building Requirement. Pictures of example building implementations are included.

The chapter closes with summaries of all measures adopted by all Case Study buildings. Frequency histograms of measure counts of each Building-Climate Partition are presented in two figures (Residential and Non-Residential buildings). These histograms enable the reader to determine characteristics about these buildings such as: "What are the most deployed Passive Measures adopted by Residential Case Study Buildings in a Heating Climate?" Finally, the Measure Summary Matrices are presented. A matrix for each Building-Climate Partition lists all measures adopted by each building in the partition, organized by Building Requirements and the three Measure Categories. From these matrices it is possible for the reader to extract Solution Sets such as "The set of all measures adopted by all Residential Buildings in a Heating Climate." The same set for individual buildings can also be extracted.

Table summary

- Section 3.2. Tables 3.1 and 3.2: High-level description of all buildings.
- Section 3.3. Table 3.3: Generic listing of all measures adopted by all buildings organized by Building Requirement and Measure Categories (Passive, Energy Efficiency, Renewable Energy).
- Section 3.5. Figures 3.29 and 3.30: Histograms of measure counts of Building-Climate Partitions organized by Measure Category.
- Section 3.5. Tables 3.7, through 3.11: Measure listings of all buildings with one table per Building-Climate Partition organized by Measure Category and Building Requirement. Solution Sets and individual building measure sets can be determined here.

3.2 The case study buildings

The database of thirty case study buildings was established to enable analysis of approaches to Net ZEB design and performance. These buildings are located in many IEA member countries and feature technologies and approaches that are relevant to current and future building projects. An overview of the case study buildings is presented in this section, including physical and energy characteristics. Later in the chapter the projects are described in the context of Net ZEB measures and the methodology set out in Chapter 2. First a description is given of how the database was established and the nature of the information that has been gathered.

Nearly 400 projects worldwide were identified by the participant building project leaders that are claimed to have been constructed to high performance or Nearly Zero Energy, Net Zero Energy or Plus Energy status. The location and other information pertaining to these 400 projects can be seen on a map shown at this web page: http://batchgeo.com/map/net-zero-energy-buildings. The research information was

gathered from literature; reports from building owners and design teams; and from scientists who undertook performance measurements (or related research) of these buildings.

The database of Case Study buildings compiled for this book was developed with the aim of compiling a group of exemplar buildings that design teams can use as an information source of new building techniques. The selection criteria included: (i) a building must be fundamentally or nearly Net Zero Energy, meaning it includes its own energy generation and (ii) a building must be connected to local energy grids (not energy autonomous or off-grid buildings, see chapter 2). Another significant requirement is that by the end of the project, data was available on measured energy use and energy production in the building. The selected buildings should not just present the hopes of the design teams; the goal was to provide the performance analysis in relation to the building design features. The energy performance of the Case Study buildings is presented in Table 3.1 and compared in Figures 5.1 and 5.2.

A further critical factor in the building selection was that the energy demand of these buildings should be at most 50% of the energy use of a similar building designed to code in the same climate. This selection criterion ensures that the Case Study buildings are genuinely high performance. The basis of this criterion is the presumption that the ideal Net ZEB design minimizes the energy load so that the energy production system needed to meet this load is not impractically large.

Using this selection criteria, approximately forty buildings were identified and over the course of the project, this reduced to thirty due to practical difficulties related to data availability. As a result of the selection criteria and process, the database is a somewhat random collection of interesting buildings. Each provides an insight into Net ZEB performance. The map in Figure 3.1 shows the geographic locations of these buildings.

As shown in Figure 3.1, the majority of the Case Study buildings (23 of 30) are located in Continental Europe including all but two Canadian Residential buildings. Triangle icons mark the locations of Non-Residential buildings, with all Non-Residential Buildings in Cooling climates, located outside of Continental Europe.

3.2.1 Residential buildings

There are twelve residential Case Study buildings (ten in Europe and two in Canada) located in two climate types: (i) Heating and (ii) Heating and Cooling. Residential buildings include both single dwellings and multi-unit types. These buildings generally have only one or two levels. Kleehaeuser is the exception being an apartment building having a mix of three and five levels.

The twelve residential Case Study buildings are listed in Table 3.1 including general information and energy performance data: primary energy consumption, generation and balance. In Chapter 5, the target (design) energy performance and the measured performance are compared and discussed. Five buildings are located in a Heating Climate and seven buildings are located in a Heating and Cooling Climate. There was no building located in a Cooling climate available for study that met the selection criteria.

 Table 3.1 Residential buildings energy characteristics.

	5						
	Net floor	77	,	E	Primary Energy Consumption	Primary Energy Generation	Primary Energy Balance
Building	area [m²]	Year	Architect	Type	[kWh/m².year]	[kWh/m².year]	[kWh/m~.year]
He	Heating Climate	ıte			Residentia	Residential Buildings	
	230	2008	Masa Noguchi	Residential	50.8	16.35	-34.45
ÉcoTerra, Eastman, Canada							
	234		Habitat Studio and Workshop Ltd	Residential	44.10	29.60	-14.50
Riverdale, Alberta, Canada							
	315	2007	Setz-Archtektur	Residential	63.00	85.00	22.00
Riehen, Switzerland							
	2520	2006	Common and Gies Architekten	Residential (apartments)	152.00	148.00	-4.00
Kleehaeuser, Freiburg, Germany							

	1403	2009	2009 grab architektur ag	Residential (apartments)	38.00	47.80	08.6
Kraftwerk B, Bennau, Switzerland							
	7890	2006	Rolf Disch SolarArchitektur	Residential (single family houses)	70.00	142.00	72.00
Plus Energy Settlement am Schlierberg, Freiburg, Germany							
	958	2006	Arch Buero Kaltenegger	Residential (single family houses)	129.51	150.40	20.89
Plus Energy Houses Weiz, Austria							
Heating 8	Heating and Cooling Climate	Clima	te		Residentia	Residential Buildings	
	378	2010	Arnaldo Savorelli/ Laboratory of Building Design	Residential	188.59	151.98	-36.61
Zero energy house, Tricesimo, Italy			0				

Table 3.1 (Continued)

Building	Net floor area [m²]	Year	Architect	Type	Primary Energy Consumption [kWh/m².year]	Primary Energy Generation [kWh/m².year]	Primary Energy Balance [kWh/m².year]
Lima, Barcelona, Spain	45		Joan Sabate, Christoph Peters, Horacio Espeche – SaAS	Residential	79.80	61.56	-18.24
Leafhouse, Rosora, Italy	477	2008	Arch Pacifico Ramazzotti	Residential	151.24	128.00	-23.24
EnergyFlex, Taastrup,	216	2009	Henning Larsens Architects	Residential	90.30	108.30	18.00
IESC Cargese, France	713	2011	M. Battesti- Mme Villa	Residential (apartments)	101.00	158.00	57.00

Figure 3.1 World map illustrating STC Database: 30 Net ZEBs by building and climate type. Totals for Continental Europe are shown. The three pictures are the Net ZEBs located in tropical climates: ENERPOS (left) and llet du Center (middle) in Reunion Island, Saint-Pierre and BCA Academy in Singapore (right).

3.2.2 Non-residential buildings

The eighteen non-residential Case Study buildings are located in three climate types: Cooling Climate (four buildings), Heating Climate (five buildings) and Heating and Cooling Climate (nine buildings). These buildings include office buildings and educational facilities. Table 3.2 lists general building information and energy performance data: primary energy consumption, generation and balance.

Figure 3.2 Leaf house, optimized utilization of solar gains during winter.

Table 3.2 Non-Residential buildings.

	,						
Building	Net floor area [m ²]	Year	Architect	Type	Primary Energy Balance [kWh/ m ² .year]	Primary Energy Generation [kWh/m ² .year]	Primary Energy Consumption [kWh/m².year]
He	Heating Climate	te			Non Reside	Non Residential Buildings	
	292	2002	Anton Oitzinger	Office	104.00	228.00	124.00
Villach Offices, Villach, Austria							
	6563	2011	IBUS Architekten	Educational	-5.36	38.64	44.00
School in Hohen Neuendorf, Germany							
	550	2005	ARGE pos architekten und Treberspurg and Partner	Hotel	-21.23	85.74	106.97
Schiestlehaus Hochschwab, Austria			Architekten				
	696	2009	tr achitekten	Educational	2.99	113.62	116.61
Die Sprösslinge Monheim, Germany							

78.10		87.20	107.04	106.00
51,70	Non Residential Buildings	31.00	107.90	44.00
-26.40	Non Reside	-56.20	0.86	-62.00
Office		Office	Office	Office
kämpfen für architektur ag	e	Petra Jebens Zirkel	ATELIER 2 M	Arte Charpentier
2007	Climat	2010	2011	2009
1267	Heating and Cooling Climate	1743	21 807	4567
Marché Kemptthal, Switzerland	Heating a	Circe Zaragoza, Spain	Green Office Paris,	Elithis Tower Dijon, France

(Continued) | 45

Table 3.2 (Continued)

Building	Net floor area [m²]	Year	Architect	Type	Primary Energy Balance [kWh/ m².year]	Primary Energy Generation [kWh/m².year]	Primary Energy Consumption [kWh/m².year]
	13 942	2009	SCAU, Guy Autran and François Gillard	Educational	-113.00	78.00	191.00
Nyoto Hign School, Poitiers, France							
	700	2006	arch.TV architetti Trojer Vonmetz	Educational	35.00	57.00	22.00
Lajon School, Italy							
	2935	2007	Lipa and Serge GOLDSTEIN	Educational	-44.00	48.00	92.00
Limeil-Brévannes, France							
	5246	2007	Marc Woodbury - Studio of Pacific	Office	0.00	168.00	168.00
Meridian Wellingthon, New Zealand			Alchilecture				

69.60	87.00		219.00		43.00*	50.00
71.47	84.00	Non Residential Buildings	304.00		43.66*	344.66
1.87	-3.00	Non Reside	189.00		0.64	294.66
Educational	Office		Office		Educational	Educational
2010 Méandre, architects	Pedro Cabrita		Michel Reynaud/ Antoine Perrau		DP Architects Pte Ltd	Atelier FAESSEL BOEHE
2010	2006	ıte	2008		2009	2008
3560	1500	Cooling Climate	310		4500	681
Pantin School, France	Solar XXI Lisbon, Portugal	O	Het do center. Saint-	Pierre, France	ZEB@BCA, Singapore	ENERPOS Saint-Pierre, France

Table 3.2 (Continued)

	Net floor				Primary Energy Balance [kWh/	Primary Energy Primary Energy Balance [kWh/ Generation Consumption	Primary Energy Consumption
Building	area [m ²] Year	Year	Architect	Type	m ² .year]	$[kWh/m^2.year]$ $[kWh/m^2.year]$	[kWh/m ² .year]
	1084,6	2010	1084,6 2010 studio 505	Office	-231.00	44.00	275.00
Pixel Melbourne,							
Australia							

3.3 Net ZEB measures 51

As in the case of residential buildings, these non-residential buildings are very high energy performance buildings with claims to be Net ZEB or nearly Net ZEB. These buildings range widely in size and scale form the very large Green Offices in France to the modest Villach Offices in Austria. Building heights vary from 2–3 levels to multistory buildings and the building form ranges from rectilinear floor plates to cylindrical floors and combinations of these.

3.3 Net ZEB measures

This section presents a list of all measures adopted by the Case Study buildings in the Net ZEB database as a summary table (Table 3.3). As this list is based on the Case Study buildings, it should not be considered an exhaustive list of possible means to obtain Net ZEB status. As technology advances and Net ZEB design concepts evolve, other solutions will develop. It is also worth noting that changes to the energy grid will have an impact on the amount of renewable energy required on site to off-set energy required to run the building from the grid. Regardless, the need to apply passive and energy efficiency measures will always be a high priority in Net ZEB design.

Table 3.3 Measure Summary (categories: PA - Passive, EE - Energy Efficiency, RE - Renewable Energy).

BUILDING REQUIREMENT	PA Icon	PA Measure	EE Icon	EE Measure	RE Icon	RE Measure	
Heating	Passive Solar Heat Gain	Passive Solar Heat Gain	Radiant Heating	Radiant Heating	Solar thermal collectors	Solar Thermal	
		Gain	heat recovery	Mechanical Air Heat Recovery	Use of Biomass	Biomass Fired Boilers	
				Recovery	Biomass Powered CHP	Biomass Powered CHP	
Heating and Cooling	Optimized Building Form	Optimized Building Form	UFAD / Displ. Ventilation	UFAD Displacement Ventilation	Geothermal Heat	Geothermal	
	Advanced Envelope	Advanced Envelope					
	Advanced Glazing	Advanced Glazing	HP Heat pump		Heat Pump		
	Thermal Mass	Thermal Mass					
	12°C 8°C 21°C Thermal zoning	Thermal zoning					

Table 3.3 (Continued)

BUILDING REQUIREMENT	PA Icon	PA Measure	EE Icon	EE Measure	RE Icon	RE Measure
Cooling	AIR Natural Ventilation	Natural Ventilation	Radiant Cooling	Radiant Cooling		
	Site vegetation	Site Vegetation				
	Sunshading	Sun Shading				
	∬ & Ground cooling	Ground Cooling	Ceiling fan	Ceiling Fans/ Evaporative Cooling		
Lighting	Sky Lights	Skylights	Advanced Lightning Control	Advanced Lighting Control		
	Solar Tubes	Solar Tubes	Energy Efficient Lightning	Energy Efficient Lighting		
Plug Loads			kWh Load Managem.	Load Management		
			Eff. Household Appliances	Efficient Household Appliances		
			Efficient office equipment	Efficient Office Equipment		
Domestic Heat Water			Hot Water Heat Recovery	Hot Water Heat	Solar thermal collectors	Solar Thermal
				Recovery	Use of Biomass	Biomass Fired Boilers
					CHP unit	Biomass powered CHP
					Geothermal Heat	Geothermal

Table 3.3 (Continued)

BUILDING REQUIREMENT	PA Icon	PA Measure	EE Icon	EE Measure	RE Icon	RE Measure
Electricity					PV Array	Photovoltaics
					On-site windfurbine	Wind Turbine
					CHP/7 Biomass Powered CHP	Biomass Powered CHP

The measures of Table 3.3 are organized by building requirement (e.g., lighting) and include measures from the three measure categories. This provides the reader with a *generalized* Solution Set of measures that address Building Requirements *without* regard to Climate and Building Type. Individual Solution Sets, specific to a Building-Climate and Building Requirement combination, can be extracted from the tables presented in Section 3.5.

The Case Study buildings illustrate that in order to approach or attain Net ZEB status, multiple building requirements need to be met by implementing various measures. In Section 3.4 each measure is discussed in the context of example implementations at Case Study buildings.

As previously discussed, Net ZEB or near Net ZEB performance is always a result of the combination of various measures implemented and working together in a building. Building requirements are met by Passive Measures to reduce the space energy demands, Energy Efficient Measures reduce the user demand (be it for direct use via plug loads or indirect use for example, heating) and Renewable Energy Measures (systems) are then used for energy generation to balance the overall demand. Nevertheless it is beneficial to discuss each particular measure in the context of the Case Study buildings.

3.4 Net ZEB measures in case study buildings

The measure descriptions are organized by Measure Category (Passive, Energy Efficiency and Renewable Energy) and Building Requirement (e.g., lighting) and include implementation examples from the Case Study buildings.

Many measures have been adopted by both Residential and Non-residential Case Study buildings. For example, Passive Strategies are the usual starting point for designers and as they are equally applicable for residential and non-residential buildings, there is extensive overlap between these uses. However, as the scale of the buildings increases so too does the magnitude of the external envelope requirements, resulting in other Strategies or Measures carrying a greater responsibility for performance outcomes.

BESTELLSCHEIN

Stück	Bestell-Nr.:	Titel	Preis* €			
	978-3-433-03072-1	Solution Sets For Net Zero Energy Buildings	79,00			
	909538	Gesamtverzeichnis Ernst & Sohn 2016/2017	kostenlos			
Monatlicher E-Mail-Newsletter: Anmeldung unter www.ernst-und-sohn.de/newsletter						
Liefer- und Rechnungsanschrift: □privat □geschäftlich						

Liefer- und Rechnungsanschillt. Derivat Digeschaftlich					
Firma					
Ansprechpartner				Telefon	
UST-ID Nr. / VAT-ID No.				Fax	
Straße//Nr.				E-Mail	
Land	-	PLZ	Ort		

Vertrauensgarantie: Dieser Auftrag kann innerhalb von zwei Wochen beim Verlag Ernst & Sohn, Wiley-VCH, Boschstr. 12, D-69469 Weinheim, schriftlich widerrufen werden.

Wilhelm Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG Rotherstraße 21, 10245 Berlin Deutschland www.ernst-und-sohn.de

Datum / Unterschrift

*€-Preise gelten ausschließlich in Deutschland. Alle Preise enthalten die gesetzliche Mehrwertsteuer. Die Lieferung erfolgt zuzüglich Versandkosten. Es gelten die Lieferungsund Zahlungsbedingungen des Verlages. Irrtum und Änderungen vorbehalten. Stand: Mai 2017 (homepage_Probekapitel)