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between is often rudimentary. This has the risk of misin-

terpretations not tosay invalid results compared to ini-

tial problem definitions. The risk is in particular high for 

nonlinear problems. As a composite material reinforced 

concrete exhibits nonlinear behaviour in its limit states 

caused byinteraction of concrete and reinforcement via 

bond and the nonlinear properties of the components. 

Its cracking is a regular behaviour. The book aims to 

make the mechanisms of reinforced concrete transpar-

ent from the perspective of numerical methods. In this 

way black boxes should also become transparent. 

Appropriate methods are described for beams plates, 

slabs and shells regarding quasi-statics and dynamics. 

Concrete creeping temperature effects prestressing, 

large displacements are treated as examples. State of 

the art concrete material models are presented. Both 

the opportunities and the pitfalls of numerical methods 

are shown. Theory is illustrated by a variety of examples. 

Most of them are performed with the ConFem software 

package implemented in Python and available under 

open-source conditions.

ABOUT THE BOOK 

Concrete is by far the most used building material due to 

its advantages: it is shapeable cost-effective and avail-

able everywhere. Combined with reinforcement it pro-

vides an immense bandwidth of properties and may be 

customized for a huge range of purposes. Thus concrete 

isthe building material of the 20th century. To be the 

building material of the 21th century its sustainability 

has to move into focus. Reinforced concrete structures 

have to be designed expending less material whereby 

their load carrying potential has to be fully utilized.  

Computational methods such as Finite Element Method 

(FEM) provide essential tools to reach the goal. In combi-

nation with experimental validation they enable a deep-

er understanding of load carrying mechanisms. A more 

realistic estimation of ultimate and serviceability limit 

states can be reached compared to traditional ap-

proaches. This allows for a significantly improved utiliza-

tion of construction materials and a broader horizon for 

innovative structural designs opens up.   

However sophisticated computational methods are usu-

ally provided as black boxes. Data is fed in the output is 

accepted as it is but anunderstanding of the steps in 
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Preface

This book grew out of lectures that the author gave at the Technische Universität
Dresden. These lectureswere entitled “ComputationalMethods for ReinforcedCon-
crete Structures” and “Design of Reinforced Concrete Structures.” Reinforced con-
crete is a composite of concrete and reinforcement connected by bond. Bond is a key
item for the behaviour of the composite, which utilises the compressive strength
of concrete and the tensile strength of reinforcement while allowing for controlled
crack formation. This makes reinforced concrete unique compared to other con-
struction materials such as steel, wood, glass, masonry, plastic materials, fibre re-
inforced plastics, geomaterials, etc. The theory and use of reinforced concrete in
structures falls in the area of structural concrete.
Numerical methods like the finite element method, on the other hand, ba-

sically allow for a realistic computation of the behaviour of all types of struc-
tures. But the implementations are generally presented as black boxes in the
view of the users. Input is fed in and the output has to be trusted. The assump-
tions and methods in-between are not transparent. This book aims to provide
transparency with special attention being paid to the unique properties of re-
inforced concrete structures. Corresponding methods are described with their
potentials and limitations while integrating them into the larger framework of
computational mechanics connected to reinforced concrete. This is aimed at ad-
vanced students of civil and mechanical engineering, academic teachers, design-
ing and supervising engineers involved in complex problems of structural con-
crete, and researchers and software developers interested in the broader picture.
Most of the methods described are complemented with examples computed with
a Python software package developed by the author and coworkers. Program
package and example data should be available at https://www.concrete-fem.com.
The package exclusively uses the methods described in this book. It is open for
discussion with the disclosure of the source code and should give stimulation for
alternatives and further developments.
This book represents a fundamental revision of the book Computational

Methods for Reinforced Concrete Structures, which was published in
2014. In particular, the chapter onmulti-axial concretematerial laws was expanded,
and the topics of crack formation and the regularisation of material laws with strain
softening were dealt with in a separate chapter. Thanks are given to the publisher
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Ernst & Sohn, Berlin, and in particular to Mrs Claudia Ozimek for the engagement
in supporting this work. My education in civil engineering andmy professional and
academic career were guided by my academic teacher Prof. Dr.-Ing. Dr.-Ing. E.h.
Dr. techn. h.c. Josef Eibl1), former Head of the Department of Concrete Structures
at the Institute of Concrete Structures and Building Materials at the Technische
Hochschule Karlsruhe (nowadays KIT – Karlsruhe Institute of Technology). Fur-
ther thanks are given to former coworkers Patrik Pröchtel, JensHartig,MirkoKitzig,
Tino Kühn, Joachim Finzel, Tilo Senckpiel-Peters, Daniel Karl, Ahmad Chihadeh,
Ammar Siddig Ali Babiker, Evmorfia Panteki, and Alaleh Sehni for their specific
contributions. I deeply appreciate the inspiring and collaborative environment of
the Institute of Concrete Structures at the Technische Unversität Dresden, which
is directed by Prof. Dr.-Ing. Dr.-Ing. E.h. Manfred Curbach. It was my pleasure to
teach and research at this institution. And I have to express my deep gratitude to
my wife Caroline for her love and patience.

Dresden, Spring 2022 Ulrich Häussler-Combe

1) He passed away in 2018.
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4.8 Prestressing

Prestressing applies lateral redirection forces and normal forces on a beam, see Fig-
ure 4.16a. While the redirection forces act against dead and variable loads a moder-
ate normal force may increase the bearing capacity for moments (Example 4.1.3.3,
Figure 4.4). But these positive effects require prestressing tendons. A concrete beam
and its ordinary reinforcement on the one hand and the tendons with high strength
steel on the other hand are regarded as separated structural elements in the follow-
ing.
We consider the Bernoulli beam. Primarily, the generalised stress 𝝈 (Eq. 4.60)) is

formulated as a function of the generalised strains𝝈 = C ⋅ 𝝐 (4.162)

with, e.g. C according to Eq. (4.16) or Eq. (4.42). A linear C is not necessarily re-
quired. This concept is extended with respect to prestressing: an additional part is
assigned to the generalised stresses resulting from prestressing tendons𝝈 = C ⋅ 𝝐 + 𝝈𝑝 (4.163)

This additional part 𝝈𝑝 depends on the tendon profile
𝝈𝑝 = ⎛⎜⎝𝑁

𝑝𝑀𝑝⎞⎟⎠ = −𝐹𝑝 ⎛⎜⎝ cos𝛼𝑝−𝑧𝑝 cos𝛼𝑝
⎞⎟⎠ (4.164)

with the prestressing force 𝐹𝑝, the height coordinate or lever arm 𝑧𝑝 of the tendon
and the inclination 𝛼𝑝 = d𝑧𝑝∕d𝑥 of the tendon against the beam reference axis, see
Figure 4.16b. Thismay be extendedwith respect to shear forces in combinationwith
the Timoshenko beam. Using the extended generalised stresses Eq. (4.163) for the
internal nodal forces Eq. (4.97) leads to a split

f𝑒 = ∫𝐿𝑒 BT ⋅ 𝝈 d𝑥 = ∫𝐿𝑒 BT ⋅ C ⋅ 𝝐 d𝑥 + ∫𝐿𝑒 BT ⋅ 𝝈𝑝 d𝑥 = f 𝜖𝑒 + f𝑝𝑒 (4.165)

The part −f𝑝𝑒 may be regarded as a further contribution to the load vector (Eq.
(2.59)) or external nodal forces. This approach integrates prestressing in the given

(a) (b)

Figure 4.16 (a) Redirection forces from prestressing. (b) Internal forces with prestressing.
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framework whereby all procedures but for a part of load evaluation remain un-
changed.
An alternative and commonviewof prestressingof beams is based onEqs. (4.492,3 ).

We consider the quasi-static case, split internal forces into a part ∙𝜖 from beam de-
formation, a part ∙𝑝 from prestressing and eliminate shear forces

−𝑀𝜖′′ − 𝑀𝑝′′ = 𝑝𝑧 (4.166)

and furthermore Eq. (4.164) is used leading to

−𝑀𝜖′′ = 𝑝𝑧 + (𝑧𝑝𝐹𝑝 cos𝛼𝑝)′′ (4.167)

A common approximation is 𝐹𝑝 ≈ 𝑐𝑜𝑛𝑠𝑡., cos𝛼𝑝 ≈ 1 resulting in

−𝑀𝜖′′ = 𝑝𝑧 + 𝑧′′𝑝𝐹𝑝 (4.168)

wherein 𝑧′′𝑝𝐹𝑝 is a lateral redirection force in the 𝑧-direction from the curvature 𝑧′′𝑝
of the tendon geometry. This termmay be seen as an additional lateral loading coun-
teracting the other loadings (Figure 4.16).
Some characteristic properties of prestressing have to be regarded for the evalua-

tion of 𝝈𝑝 or f𝑝, respectively.
• Tendon profile parameters 𝑧𝑝, 𝛼𝑝 may vary with the beam coordinate 𝑥 according
to prestressing design.

• The prestressing force may vary due to the loss of prestress from friction of the
tendon in a conduit.

• Furthermore, a beamdeformationmay lead to a change in the tendonprofile. Two
types have to be considered in this context:
1. Unbonded prestressing: total length of the tendon changes. This leads to

a global change of the prestressing force.
2. Bonded prestressing: length of the tendon changes locally to keep the geomet-

ric compatibility with the concrete. This leads to locally varying changes in
the prestressing force.

Two subsequent stages have to be considered for prestressing:

• Set-up stage of prestressing with the prescribed prestressing force 𝐹𝑝
0

Prestressing is gradually applied at the beam ends through anchors. The value
of 𝐹𝑝

0 may vary along the longitudinal beam coordinate 𝑥 due to friction losses.
Such losses have to be determined from prescribed friction coefficients and the
curvature of the tendon geometry.

• Tendonsmay be grouted at the end of the set-up stage leading to post-bonding. This
is generally denoted as bonded prestressing although this is not entirely precise.
Grouting is omitted for unbonded prestressing.

• Service stage of prestressing with locked anchors
The prestressing force 𝐹𝑝

0 changes into 𝐹𝑝 depending on loading and prestressing
type.
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The tendon geometry plays a key role. It is described for each finite beam element
in analogy to the Bernoulli beam trial function (Eq. (4.82)) by

𝑧𝑝 = [ 𝑟3
4
− 3𝑟

4
+ 1

2
𝐿𝑒𝑟3
8

− 𝐿𝑒𝑟2
8

− 𝐿𝑒𝑟
8
+ 𝐿𝑒

8
−𝑟3
4
+ 3𝑟

4
+ 1

2
𝐿𝑒𝑟3
8

+ 𝐿𝑒𝑟2
8

− 𝐿𝑒𝑟
8
− 𝐿𝑒

8
]

⋅ (𝑧𝑝𝐼 𝛼𝑝𝐼 𝑧𝑝𝐽 𝛼𝑝𝐽)T (4.169)

with the element length 𝐿𝑒 and the tendon inclination
𝛼𝑃 = 𝜕𝑧𝑝𝜕𝑥 = 𝜕𝑧𝑝𝜕𝑟 𝜕𝑟𝜕𝑥 = 𝑧′𝑝 (4.170)

Lateral tendon position 𝑧𝑝 and inclination 𝛼𝑝 at the left-hand and right-hand ele-
ment nodes are given by 𝑧𝑝𝐼 , 𝛼𝑝𝐼 and 𝑧𝑝𝐽, 𝛼𝑝𝐽 . The local element coordinate is in
the range −1 ≤ 𝑟 ≤ 1. This approach reproduces 𝑧𝑝(−1) = 𝑧𝑝𝐼, 𝑧′𝑝(−1) = 𝛼𝑝𝐼 and𝑧𝑝(1) = 𝑧𝑝𝐽, 𝑧′𝑝(1) = 𝛼𝑝𝐽 . The geometric length of a tendon within an element 𝑒 is
given by

𝐿𝑃𝑒 = 𝐿𝑒
2

1∫−1
√(𝑥′𝑝)2 + (𝑧′𝑝)2 d𝑟 (4.171)

whereby the derivative of the tendon position 𝑥𝑝 in the longitudinal direction has
also to be regarded. We obtain𝑥′𝑝 = 1 (4.172)

for the nominal undeformed tendon geometry and𝑥′𝑝 = 1+ 𝜖 (4.173)

considering beam deformations with the longitudinal strain 𝜖 of the reference axis.
Furthermore, on the one hand Eq. (4.169) is applied to the nominal undeformed
tendon geometry according to design with(𝑧𝑝𝐼 𝛼𝑝𝐼 𝑧𝑝𝐽 𝛼𝑝𝐽) = (𝑧𝑝0𝐼 𝛼𝑝0𝐼 𝑧𝑝0𝐽 𝛼𝑝0𝐽) (4.174)

with prescribed values 𝑧𝑝0𝐼 , 𝛼𝑝0𝐼 , 𝑧𝑝0𝐽 , 𝛼𝑝0𝐽 . On the other hand, Eq. (4.169) gives the
tendon geometry considering beam deformations with(𝑧𝑝𝐼 𝛼𝑝𝐼 𝑧𝑝𝐽 𝛼𝑝𝐽) = (𝑧𝑝0𝐼 + 𝑤𝐼 𝛼𝑝0𝐼 + 𝜙𝐼 𝑧𝑝0𝐽 + 𝑤𝐽 𝛼𝑝0𝐽 + 𝜙𝐽)

(4.175)

with the beam nodal displacements 𝑤𝐼, 𝜙𝐼, 𝑤𝐽, 𝜙𝐽 . This yields 𝑧′𝑝 from Eq. (4.169)
according to Eq. (4.822). The Eq. (4.171) has to be integrated numerically for each
element, e.g. with a Gauss integration (Section 2.7). The total length 𝐿𝑃 of a tendon
is given by adding all element contributions.
Regarding prestressing without bond the tendon length can be determined sepa-

rately with a value 𝐿𝑃
0 for the set-up stage and with a value 𝐿𝑃 for the service stage

whereby Eq. (4.175) is used with the actually calculated nodal displacements for
each stage. This has a side effect.
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◀ Strains of unbonded tendons do not follow the Bernoulli–Navier hypothesis (Sec-
tion 4.1.1).

The prestressing force is prescribed with 𝐹𝑝
0 for the set-up stage and is determined

with

𝐹𝑝 = 𝐿𝑃𝐿𝑃
0
𝐹𝑝
0 (4.176)

in the service stage of prestressing.
Regarding prestressing with post-bonding a tendon gets a local elongation after

locking of prestressing anchors and grouting due to bond between tendons and con-
crete. This local elongation is ruled by the beam deformation kinematics (Eq. (4.5))
and the additional strain of the tendon is given by

Δ𝜖𝑝(𝑥) = Δ𝜖(𝑥) − 𝑧𝑝 Δ𝜅(𝑥) (4.177)

with the difference Δ𝜖, Δ𝜅 of generalised strains between set-up and service stage
whereby varying along the beam axis.

◀ Strains of post-bonded tendons follow the Bernoulli–Navier hypothesis during the ser-
vice stage although not during the set-up stage.

This leads to a prestressing force

𝐹𝑝(𝑥) = 𝐹𝑝
0 + 𝐸𝑝𝐴𝑝 Δ𝜖𝑝(𝑥) (4.178)

in the service stage with Young’s modulus 𝐸𝑝 of the prestressing steel – elastic be-
haviour is assumed to simplify – and the cross-sectional area 𝐴𝑝 of tendons.
Finally, internal prestressing forces contributing to loadings are determined us-

ing Eq. (4.164). A loading from prestressing distinguishes from self weight, service
load, temperature as it depends on displacements and yields a nonlinear load con-
tribution. But the computations show that 𝐹𝑝 and 𝐹𝑝

0 generally do not differ by
large amounts. Thus, the particular procedures concerningprestressing can be sum-
marised with

• define the tendon geometry and prestressing force,
• compute internal forces from prestressing,
• compute nodal forces from prestressing and apply as loads,
• compute system reaction,
• iterate if necessary to consider a change in prestressing forces

which seamlessly fits into the incrementally iterative approach (Section 2.8.2). The
application is demonstrated with the following example.
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Example 4.6: Prestressed RC beam
We refer to Example 4.2 with basically the same system, but the span is doubled to𝐿 = 10m. Thus, load bearing capacity is strongly reduced. Prestressing is used to
maintain this capacity. The relevant system parameters are as follows:

• A concrete cross-section 𝑏 = 0.2, ℎ = 0.4, a compressive strength 𝑓𝑐𝑑 = 38MN∕m2

and a lower and upper reinforcement𝐴𝑠1 =𝐴𝑠2 = 12.57 cm2 , 𝑑1 = 𝑑2 = 5 cm yield
an ultimate bending moment 𝑀𝑢 ≈ 0.20MNm with 𝑁 = 0 (Example 4.1, Fig-
ure 4.4). This corresponds to anuniform loading𝑞𝑢 = 8𝑀𝑢∕𝐿2 = 15.2 kN∕mwhich
should be increased by prestressing.

• A nominal uniform concrete prestressing stress of 𝜎𝑐0 = −10MN∕m2 is chosen
in a first approach leading to 𝐹𝑝

0 = 0.8MN. The nominal tendon geometry of the
whole beam is given by a parabola starting and ending in the centre line with
a downward catenary ℎ𝑝 . This is described by

𝑧𝑝 = 4ℎ𝑝 (𝑥2𝐿2 − 𝑥𝐿) (4.179)

A value ℎ𝑝 = 0.15m is chosen in this example.
• Prestressing tendon and steel properties are chosenwith cross-sectional area𝐴𝑝 =
6 cm2, elastic limit 𝑓𝑝0,1 = 1600MN∕m2, strength 𝑓𝑝 = 1800MN∕m2, Young’s
modulus 𝐸𝑝 = 200 000MN∕m2, nominal initial steel stress 𝜎𝑝

0 = 1333MN∕m2

with a strain 𝜖𝑝0 = 6.67 o/oo.
• A dead load is assumed with 𝑞 = 5 kN∕m.
Loading is applied in two steps: (1) set-up of prestressing and dead load, (2) locking
of prestressing and additional application of a service load 𝑞𝑝 = 25 kN∕m. Frictional
losses are neglected to simplify this example. Both cases – prestressing with and
without bond – are alternatively regarded for the service stage of prestressing. The
solution method is incrementally iterative with Newton–Raphson iteration within
increments. This leads to the following results for prestressing without bond:

• The computed increase in prestressing force after load step 2 according to
Eq. (4.176) is minimalwith𝐹𝑝∕𝐹𝑝

0 = 1.002. This results from the low ratio ℎ𝑝∕𝐿 =
1∕67.

• For the computedmid-span displacements, see Figure 4.17a. The deflection starts
with an uplift during application of prestressing. The final mid-span deflection in
load step 2 is quite large with 0.107 m (≈ 1/90 of the span), but the load-carrying
capacity is not yet exhausted with an uppermid-span concrete compressive strain
of−2.0 o/oo (limit strain is−3.5 o/oo). Serviceability is presumably not givenwithout
further provisions due to the high slenderness (1/25).

• For the bending moment 𝑀𝑐 in the RC cross-section only see Figure 4.18a. The
total moment from the dead load and the service load is 𝑀𝑞 = 0.03 ⋅ 102∕8 =
0.375MNm. The computed RC mid-span contribution is𝑀𝑐 = 0.255 and the con-
tribution from prestressing𝑀𝑝 = 0.120. The increased RC moment compared to
the initial estimation results from the compressive normal force.
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(a) (b)

Figure 4.17 Example 4.6. (a) System. (b) Mid-span load–deflection curve.

(a) (b)

Figure 4.18 Example 4.6. Final stage. (a) RC bending moment Mc . (b) Prestressing force Fp.

Furthermore, the results for prestressing with post-bonding:

• The tendon gets a local additional strain due to the locally varying deformation
of the beam (Eq. (4.177)). This leads to an additional prestressing force 𝐹𝑝, see
Eq. (4.178) and Figure 4.18b, and to a higher contribution of prestressing to the
load bearing capacity whereby reducing concrete demand.

• More significant results are given with the final mid-span deflection reduced to
0.086m (Figure 4.17b) compared to the unbonded case, the RCmoment contribu-
tion reduced to𝑀𝑐 = 0.220 (Figure 4.18a) and the prestressing moment contribu-
tion increased to𝑀𝑝 = 0.155.

Prestressing roughly leads to a doubling of ultimate limit loads in this example. As-
pects of serviceability have to be treated separately. The comparison between pre-
stressingwith andwithout bond in this example is somehowacademic, as in practice
prestressing with bond is exposed to more non-mechanical effects whichmight lead
to some restrictions to fully utilise the load carrying capacities of the prestressing
steel. Details are ruled in codes.
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Finally, the uniaxial stress–strain relations are derived for the two material sym-
metry directions. The 1-direction has 𝜎22 = 0, leading to

𝜎11 = 𝐸1 𝜖11 , 𝜖22 = − 𝜈√𝐸1𝐸2 𝜎11 (6.35)

With given values for 𝜎11, 𝜖11, 𝜖22 from a test 𝐴, two equations are given for three
unknowns 𝐸1, 𝐸2, 𝜈. The 2-direction has 𝜎11 = 0 leading to

𝜎22 = 𝐸2 𝜖22 , 𝜖11 = − 𝜈√𝐸1𝐸2 𝜎22 (6.36)

With given values for 𝜎22, 𝜖22, 𝜖11 from a test 𝐵 – strains from test 𝐴 and test 𝐵 are
not the same – two further equations are given for the unknown material param-
eters. Thus, the set of four equations (6.35) and (6.36) is overdetermined for the
unknowns 𝐸1, 𝐸2, 𝜈. A best fit may be found with a least squares approach (Appen-
dix E, Eqs. (E.2)–(E.6)).

6.4 Nonlinear Material Behaviour

6.4.1 Tangential Stiffness

With respect to the uniaxial case, nonlinear material behaviour of concrete is char-
acterised by a decreasing tangential material stiffness (Figure 3.1). This property
is transferred to the multi-axial case. A general formulation of nonlinear material
behaviour is given by Eq. (6.12)𝝈̇ = C𝑇 ⋅ 𝝐̇ (6.37)

With respect to the initial behaviour of previously unloaded concrete, it can be as-
sumed that it initially behaves as a linear elastic isotropic material. The initial tan-
gential material stiffness matrix C𝑇 is given according to Eq. (6.23). Values for the
initial Young’s modulus 𝐸𝑐 and the initial Poisson’s 𝜈 ratio depending on concrete
grade are given by EN 1992-1-1 (2004, 3.1.3), CEB-FIP2 (2012, 5.1.7). But a tangen-
tial stiffness matrix C𝑇 is subject to change after the initial state andmay depend on
stress 𝝈, strain 𝝐 and internal state variables 𝜿

C𝑇 = C𝑇(𝝈, 𝝐, 𝜿) (6.38)

Internal state variables 𝜿 comprise a loading history. They are necessary, as an actual
state𝝈, 𝝐may lead to different responses 𝝈̇ for different loadinghistorieswith a given𝝐̇ . Internal state variables require evolution laws𝜿̇ = F(𝝈, 𝝐, 𝜿) (6.39)

describing their rates depending on stress, strain, and values of internal state vari-
ables.
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Aspects of isotropy and anisotropy as were described in Section 6.3 are also an is-
sue for nonlinear behaviour. Isotropic nonlinear behaviour is characterised in the
same way as was formulated in Section 6.3.1. The previous reasoning regarding 𝝈, 𝝐
in the same way applies to rates 𝝈̇, 𝝐̇ , leading the same conclusion about the prin-
cipal directions of the stress and strain rates and to the same restrictions for the
coefficients of an isotropic tangential material stiffness C𝑇

◀ A nonlinear isotropic material behaves in the same way in every action direction. Princi-
pal directions of stress increments coincide with principal directions of strain increments
for a given material state. The principal stress increments have the same values for all
principal strain directions with given strain increment values.

In analogy to Eq. (6.20), an isotropic tangential material stiffness matrix obeys a re-
lation

C𝑇 = QT ⋅ C𝑇 ⋅ Q (6.40)

for arbitrary rotations Q. As a consequence, the tangential material stiffness ma-
trix C𝑇 has to follow a form like Eq. (6.22), which allows only for two independent
coefficients.
Materials initially isotropic may become anisotropic in higher loading levels. In

the case of concrete a load-induced anisotropy especially arises with crackingwhere-
by the direction normal to a crack has a reduced capacity to transmit tensile stresses
while stiffness and strength may remain unaffected in the direction of a crack (Fig-
ure 3.3a).
Orthotropic forms may be used to model a load-induced anisotropy due to crack-

ing. The tangential material stiffness matrix C𝑇 then has to obey to a form like
Eq. (6.25) or Eq. (6.34) in the case of plane stress and shear isotropy. The respective
matrix coefficients may depend on stress, strain, and loading history according to
Eq. (6.38). The orthotropic tangentialmaterial flexibilityD𝑇 for 3D states gets a form
according to Eq. (6.26) with varying coefficients. Corresponding forms are derived
in Section 7.4 within the framework of 2D smeared crack models (Section 3.5).

6.4.2 Principal Stress Space and Isotropic Strength

Stress limit states mark the other end compared to initial states. They describe the
strength of materials. For initially isotropic materials like concrete, such stress limit
states are described by an isotropic strength condition𝑔(𝐼1, 𝐽2, 𝐽3) = 0 (6.41)

using stress invariants 𝐼1, 𝐽2, 𝐽3 derived from principal stress values 𝜎1, 𝜎2, 𝜎3 by
Eq. (6.19). Stress states with 𝑔(𝐼1, 𝐽2, 𝐽3) ≤ 0 are admissible; states 𝑔(𝐼1, 𝐽2, 𝐽3) > 0
cannot be sustained. This has some implications.

• The orientation of principal stress directions relative to material directions (Sec-
tion 6.3) has no influence on the strength condition.



Ulrich Häussler-Combe: Computational Structural Concrete — 2022/8/11 — page 166 — le-tex

166 6 Multi-Axial Concrete Behaviour

(a) (b)

Figure 6.4 (a) Hydrostatic length and deviatoric plane. (b) Deviatoric length and Lode
angle in the deviatoric plane.

• Furthermore, an exchange of principal stress values (Section 6.2.3) does not have
any influence on the strength condition either.

• Admissible forms for equivalent functions 𝑓(𝜎1, 𝜎2, 𝜎3) derived from 𝑔(𝐼1, 𝐽2, 𝐽3)
by using Eq. (6.19) are constrained by the inherent structure of the invariants.

We assume the admissible forms 𝑓(𝜎1, 𝜎2, 𝜎3) for the following.
The stress–strain behaviour described by Eq. (6.37) is sometimes separated from

the strength limit states described by 𝑓(𝜎1, 𝜎2, 𝜎3), and both are treated indepen-
dently. To have a consistent material description the integration of stresses 𝝈̇ from
Eq. (6.37) during the loading history driven by a time 𝑡 should not lead to stress states
violating the strength condition Eq. (6.41). The elasto-plastic material models de-
scribed in Section 6.5, the damagemodels described in Section 6.6, or themicroplane
models described in Section 6.8 combine stress–strain relations and strength in such
a way that the consistency of the material description is ensured.
An isotropic strength condition generally becomes active with one predominant

principal stress component. Let us assume that 𝜎1 activates the tensile strength in
the 1-direction. The respective material point is generally not considered to fail in
every aspect. A utilisation of strength in the remaining directions is still allowed in
the following loading history. Thus, e.g. a load-induced anisotropy – tensile strength
is reached in one direction, while compressive strength is utilised in orthogonal di-
rections – may be combined with an isotropic strength condition.

◀ Isotropic strength conditions basically do not exclude anisotropic stress–strain
relations.

Such isotropic strength conditions 𝑓(𝜎1, 𝜎2, 𝜎3) are used for concrete and will be
considered in the following.
Principal stress values span a triaxial Cartesian coordinate system (→ principal

stress space), and the corresponding stress state is given by a vector. This has the
following significant elements, see also Figure 6.4:
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• The hydrostatic axis as a space diagonal with a direction n𝜉 = (
1 1 1

)T ∕√3.
A direction is a vector of length 1 by definition.

• The projection of a stress vector 𝝈 = (𝜎1 𝜎2 𝜎3)T on the hydrostatic axis:𝝃 = 𝜉 (
1 1 1

)T ∕√3 with hydrostatic length 𝜉 = (𝜎1 + 𝜎2 + 𝜎3)∕√3.
• The deviatoric plane with origin at 𝝃 and a normal n𝜉 . It is spanned by all vectors
starting in 𝝃 with zero hydrostatic length 𝜉.

• The projection of a stress vector 𝝈 = (𝜎1 𝜎2 𝜎3)T on its deviatoric plane
𝝆 = 𝝈 − 𝝃 = 1

3

⎛⎜⎜⎝
2𝜎1 − 𝜎2 − 𝜎3−𝜎1 + 2𝜎2 − 𝜎3−𝜎1 − 𝜎2 + 2𝜎3

⎞⎟⎟⎠ (6.42)

with 𝜌1 + 𝜌2 + 𝜌3 = 0.

• The projection of the particular vector𝝈 = (
1 0 0

)T
on the deviatoric plane ac-

cording to Eq. (6.42): 𝝆1 = 2∕3 (1 − 1
2

− 1
2

)T
. It has a direction 𝝆1 =√

2∕3 (1 − 1
2

− 1
2

)T
called the Rendulic direction in the following.

An isotropic strength condition like Eq. (6.41) forms a strength surface in the prin-
cipal stress space and defines triaxial strength. A stress vector and, in particular,
a point on this surface can be described byHaigh–Westergaard coordinateswith the
following components:

• The hydrostatic length 𝜉 is already introduced as length of the stress vector on the
hydrostatic axis𝜉 = 1√

3
(𝜎1 + 𝜎2 + 𝜎3) = 𝐼1√

3
→ 𝐼1 = √

3 𝜉 (6.43)

• The deviatoric length 𝜌 results from the length of the vector 𝝆 from Eq. (6.42). This
leads to the second invariant of the stress deviator (Eq. (6.19))

𝜌 = |𝝆| = √
2𝐽2 → 𝐽2 = 𝜌2

2 (6.44)

• The Lode angle 𝜃 spans between the Rendulic direction and deviatoric direction
cos 𝜃 = 1𝜌 𝝆 ⋅ 𝝆1 (6.45)

A common alternative of this formulation is given by

cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃 = 3
√
3

2
𝐽3√𝐽32 (6.46)

with the second and third invariants 𝐽2, 𝐽3 of the stress deviator (Eq. (6.19)). Equa-
tion (6.46) yields one solution in the range 0° ≤ 𝜃 ≤ 60°. But this is not a restric-
tion, as any interchanging of 𝜎1, 𝜎2, 𝜎3 is equivalent; see the remarks following
Eq. (6.41).
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A convention𝜎1 ≥ 𝜎2 ≥ 𝜎3 (6.47)

(signed!) is generally used without loss of generality with respect to isotropic
strength. Thus, a state of stress is uniquely determined by 𝜉, 𝜌 and, finally, 𝜃 in
the range 0 ≤ 𝜃 ≤ 60°.

6.4.3 Strength of Concrete

The strength of solid materials is determined experimentally with specimens of at
least the size of an representative volume element (RVE) (Section 6.1.1). Cylindrical
specimens are often used for concrete. A typical experimental set-up is shown in
Figure 6.5 with the triaxial cell.
It allows applying longitudinal and radial pressure independently from another.

The radial pressure is connected with a circumferential pressure of the same value
to establish equilibrium. Both form the confining pressure. A first principal stress
directly corresponds to the longitudinal pressure; the confining pressure leads to
the identical second and third principal stress. A test is started with identical lon-
gitudinal and confining pressures. After that, the longitudinal pressure is changed
until it reaches an extremal value corresponding to strength. Such a set-up has the
following locations in the principal stress space:

• The compressive meridianwith 𝜎1 = 𝜎2 > 𝜎3 (signed): a cylindrical specimenwith
compression 𝜎3 < 0 in the longitudinal direction and circumferential confining
pressure 𝜎1 = 𝜎2 < 0, |𝜎1| < |𝜎3|. Equation (6.19) yields 𝐽2 = (𝜎1 − 𝜎3)2∕3 and𝐽3 = −2(𝜎1 − 𝜎3)3∕27 and Eq. (6.46) cos 3𝜃 = −1 or 𝜃 = 60°.

• The tensile meridian with 𝜎1 > 𝜎2 = 𝜎3 (signed): a cylindrical specimen with cir-
cumferential confining pressure 𝜎2 = 𝜎3 < 0 and a longitudinal compression 𝜎1 <
0, |𝜎1| < |𝜎3|. Equation (6.19) yields 𝐽2 = (𝜎1 − 𝜎3)2∕3 and 𝐽3 = 2(𝜎1 − 𝜎3)3∕27
and Eq. (6.46) cos 3𝜃 = 1 or 𝜃 = 0°.

The compressive and tensilemeridians form particular curves within the strength
surface as is shown in Figure 6.6. They are determined as the intersection of the
strength surface with the deviatoric planes with Lode angles 𝜃 = 60° and 𝜃 = 0°, re-

Figure 6.5 Triaxial cell.
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(a) (b)

Figure 6.6 Strength surfaces. (a) General view direction. (b) Pressure axis view direction.

spectively. Strength surfaces of concrete themselves form a smoothed, curved tetra-
hedron (Figure 6.6). Its tip is located in the positive octant (𝜎1 > 0, 𝜎2 > 0, 𝜎3 > 0)
near the origin. The origin indicates the triaxial tensile strength. The strength sur-
face opens in the negative octant (𝜎1 < 0, 𝜎2 < 0, 𝜎3 < 0) and can be specified as
follows:

• Many experimental data exist for the compressive and the tensile meridians due
to the relatively simple triaxial cell set-up (Figure 6.5). Bothmeridians are slightly
curved. The tensile meridian falls below the compressive meridian, if both are
sketched in a plane.

• The range between compressive and tensile meridians with a Lode angle 0° ≤ 𝜃 ≤
60° is sufficient to describe the whole strength surface. This section replicates for
the remaining range full range of 𝜃 due to the isotropic strength condition; see the
remarks following Eq. (6.41). This also replicates the meridians.

• The range 0° ≤ 𝜃 ≤ 60° has three different principal stresses, which cannot be
realised with the conventional triaxial cell according to Figure 6.5. True triaxial
cells are required with a much higher experimental effort, and experimental data
are rare in this range (Hampel et al. 2009).

• Strength ‘increases’ under hydrostatic pressure. Or more precisely, the admissible
deviatoric length increases with increasing pressure for a certain range of pres-
sures. This also depends on the Lode angle.

• The deviatoric concrete strength under very high pressures is not really known
yet. From a theoretical point of view, there is no strength limit for a pure pres-
sure. Practically, pure pressure is not reachable in experimental set-ups. Small
deviatoric parts cannot be avoided.

• The tensile strength in multi-axial tension does not significantly differ from uni-
axial tensile strength. Thus, it should be possible to reach the uniaxial tensile
strength in three directions simultaneously. But this has not yet been proved ex-
perimentally up to now.

A stress–strain relation has to be defined for all states within the strength surface.
This may be assumed as isotropic linear elastic initially and become increasingly
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nonlinear when approaching the strength surface. Basic approaches to describe
nonlinear material behaviour are given with elasto-plasticity described in Sec-
tion 6.5, damage described in Section 6.6, and microplane described in Section 6.8.
A selection of widely referenced formulations for the strength surface of concrete

is given in the following.

• The strength surface of Ottosen (Ottosen 1977)

𝑓 = 𝑎 𝐽2𝑓2𝑐 + 𝜆 √𝐽2𝑓𝑐 + 𝑏 𝐼1𝑓𝑐 − 1 = 0 (6.48)

with the uniaxial compression strength 𝑓𝑐 (unsigned), constants 𝑎, 𝑏, and
𝜆 = 𝑘1 cos [13 arccos(𝑘2 cos 3𝜃)] , for cos 3𝜃 ≥ 0

𝜆 = 𝑘1 cos [π3 − 1
3 arccos(−𝑘2 cos 3𝜃)] , for cos 3𝜃 ≤ 0

(6.49)

with further constants 𝑘1, 𝑘2. The four material constants 𝑎, 𝑏, 𝑘1, 𝑘2 are deter-
mined from the tensile strength 𝑓𝑐𝑡 , the biaxial strength, and points on the com-
pressive meridian.

• The strength surface ofHsieh–Ting–Chen (Hsieh et al. 1982)

𝑓 = 𝑎 𝐽2𝑓2𝑐 + 𝑏 √𝐽2𝑓𝑐 + 𝑐 𝜎1𝑓𝑐 + 𝑑 𝐼1𝑓𝑐 − 1 = 0 (6.50)

with constants 𝑎, 𝑏, 𝑐, 𝑑 and the largest principal stress 𝜎1. This is rewritten as
𝑓 = 𝑎 ( 𝜌𝑓𝑐 )2 + (𝑏 cos 𝜃 + 𝑐) 𝜌𝑓𝑐 + 𝑑 𝜉𝑓𝑐 − 1 = 0 (6.51)

with the hydrostatic length 𝜉 (Eq. (6.43)), the deviatoric length 𝜌 (Eq. (6.44)), and
Lode angle 𝜃 (Eq. (6.46)). Hence, the largest principal stress 𝜎1 is replaced by
invariants.

• The strength surface of Willam/Warnke (Willam and Warnke (1975), Chen and
Saleeb (1994, Section 5.5)).

𝜌 = 2𝜌𝑐(𝜌2𝑐 − 𝜌2𝑡 ) cos 𝜃 + 𝜌𝑐(2𝜌𝑡 − 𝜌𝑐)√4(𝜌2𝑐 − 𝜌2𝑡 ) cos2 𝜃 + 5𝜌2𝑡 − 4𝜌𝑡𝜌𝑐
4(𝜌2𝑐 − 𝜌2𝑡 ) cos2 𝜃 + (𝜌𝑐 − 2𝜌𝑡)2

(6.52)

with 𝜉 = 𝑎0 + 𝑎1 𝜌𝑡 + 𝑎2 𝜌2𝑡 , 𝜉 = 𝑏0 + 𝑏1 𝜌𝑐 + 𝑏2 𝜌2𝑐 (6.53)

and 𝜉 = 𝜉∕𝑓𝑐, 𝜌 = 𝜌∕𝑓𝑐 . The parameters𝜌𝑡 describe the normalised tensilemerid-
ian, i.e. 𝜃 = 0° and 𝜌𝑐 the normalised compressive meridian, i.e. 𝜃 = 60°. The
parameters 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2 are material constants. As the compressive and
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