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Preface

Preface

In steel constructions, slender plated structures which are subject to 
in-plane forces and are composed of flat, unstiffened or stiffened plates, are  
designed according to EN 1993-1-5 [1]. 

Due to the common slenderness of plated structures, the proof of  
adequate buckling resistance is crucial for dimensioning. Plate buckling is a 
stability problem of a compression loaded plate and is generally characterised 
by failure of the structure prior to achieving plastic component resistance.

According to EN 1993-1-5, these buckling verifications may be  
carried out using two analytical verification concepts; the effective width 
method (EWM) and the reduced stress method (RSM). A verification assisted 
by finite element analysis (FEM) is equally permitted.

The application of FEM is becoming increasingly prevalent in applied 
engineering, despite the fact that this method is currently only briefly dealt with 
in the informative Annex C of EN 1993-1-5. The reasons for the increasing use 
of FEM for buckling verification in practice are:

The two analytical buckling verifications are associated with a high cal-
culation effort.

Software manufacturers have prepared their FEM products in such a  
user-friendly manner that even users with a low level of subject matter expertise 
can operate the software after a very short period of training / familiarization.

The computers in engineering offices have such a high level of per-
formance that buckling verification can be carried out using FEM within  
acceptable computing times.

For the 2nd generation of Eurocodes the existing rules concerning 
FEM, which are spread in different parts of Eurocode 3, will be collected and  
enhanced to a new individual part prEN 1993-1-14 [2] on “Design assis- 
ted by FEM”, which will define the framework of FE design methods for all 
types of steel structures. As this is still under development the manual given 
here will mainly refer to the existing rules in EN 1993-1-5 [1]. However, as  
|prEN 1993-1-14 [2] is partly derived from the content given in Annex C of 
EN1993-1-5, no contradiction should occur when using the recommendations 



xii

Preface

given here also in future. In contrast, the rules and examples given here might 
illustrate the future prEN1993-1-14 and its application. 

In addition to the consideration of material and geometric non-lineari-
ties, the approach of geometrical and structural imperfections plays an essen-
tial role for plate buckling design. If the separate consideration of the afore-
mentioned imperfections is not possible, the Euro-code offers the possibility 
of establishing equivalent geometric imperfection shapes. However, detailed 
user instructions about how to combine the local and the global, as well as the 
leading and the accompanying imperfections are not yet provided clearly. As 
a result, a variety of scenarios with different imperfection patterns have to be 
taken into account and the associated effort increases considerably.

This is one of the issues where useful information is given within this 
manual. Aside of technical background information on calculation methods 
and software requirements, modelling, solution settings, evaluation and verifi-
cation as a key part of this manual benchmark examples and worked examples 
are given. They do not only allow the user to better understand the procedure 
and the background, but can also serve as test examples to prove the validity 
of own numerical calculations.

We are sure that this manual will contribute to an improved knowledge 
on the application of FEM for the design of plated structures and thereby  
enhance the acceptance of FEM design in practice. 

Gerhard Lener and Ulrike Kuhlmann, in January 2021
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Chapter 4

Modelling (Preprocessing)

4.1   MATERIAL PROPERTIES

The correct representation of material behaviour is of utmost impor-
tance because it is one of the most influential parameters that may affect the 
results of numerical analyses. Generally, mechanical properties of steel are 
characterised by elastic modulus, yield strength, ultimate strength and strain 
hardening behaviour. It is common to assume isotropic material with identical 
values of mechanical properties in all directions so that the input can be based 
on uniaxial stress-strain data.

Recommendations for material models are given in Annex C.6,  
EN 1993-1-5 [1], and in Swedish Steel Standard BSK 07 [9]. Basically,  
EN 1993-1-5 provides three material models, see Figure 4.1. Poisson’s ratio for 
steel is typically set to ν = 0.3 and the elastic modulus is E = 210 000 N/mm2.

The bilinear stress-strain curves are intended for calculations for which 
no stress-strain data are explicitely available. If strain hardening is neglected 
a yield plateau is theoretically assumed, see Figure 4.1a. For reasons of nume- 
rical convergence, it might be useful to define a nominal plateau slope with a 
small value of E/10000.

Whether strain hardening is considered or not depends on the required 
accuracy. Following the comments in [10], besides primary membrane stresses, 
secondary bending stresses occur in both directions in a buckled plate. Using 
a yield plateau results in an earlier loss of plate bending stiffness as soon as  
yielding of the primary stresses starts. Thus, plate buckling will occur also sligh- 
tly earlier which can be avoided when strain hardening is considered. In case 
it is considered, EN 1993-1-5 proposes a simple approximation with a slope of 
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E/100 which has proven to be a reasonable value for a wide range of steel grades 
for strains up to 5 %, see Figure 4.1b.

If material properties from tests are available, the stress-strain curve can 
be followed one-to-one. Then the stress-strain curve from tests should be trans-
formed into the true stress-strain curve to account for the decrease of cross 
sectional area near fracture, see Figure 4.1c. The true stress-strain curve can 
be derived from the stress-strain data of the tests with Eq. (4.1). However, this 
effect is noticeable only when the strains at failure become very large.

	
σ true = σ ⋅ 1+ ε( )
ε true = ln 1+ ε( )

	 (4.1)

Besides that, BSK 07 offers a quite useful parametrised stress-strain 
curve according to Figure 4.2. Since it is based on the values from elastic 
modulus, yield strength and ultimate strength, it allows a very simple though 
refined definition of the material behaviour.

1

εε ε

Figure 4.1  –  Material models according to Annex C.6, EN 1993-1-5 [1]

Figure 4.2  –  Material models according to BSK 07 [9]
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4.2   Mesh Discretisation

4.2   MESH DISCRETISATION

The description of mesh discretisation hereafter is based on the most 
common use of shell finite elements. When using them, the geometric mid-
surface of the mathematical model is discretised by dividing it into a mesh of 
finite elements of the chosen type. There are a few shell elements with diffe- 
rent features, ranging from elastic shell theory to nonlinear theory with large 
rotations and plasticity. Nonlinear buckling analysis of thin plates is based 
upon small strain, large displacement analyses accounting for large rotations. 
Besides material nonlinearity, the geometrical nonlinear effect in the analysis 
of slender thin plates is caused by finite (large) rotations. The requirements 
imposed by the nonlinear analysis lead to the preselection of a shell finite 
element which accounts for nonlinear, large rotation, and even finite strain 
applications, plasticity and transverse shear deformation. These elements 
can be also used for linear bifurcation analysis, e.g. to generate eigenmode- 
affine imperfection shapes. Because they usually perform similar well as pure-
ly elastic shell types, there is no need to change the shell type.

Generally, shell elements have six degrees of freedom (DOF) at each 
node: translations in the x-, y-, and z-axis, and rotations about the x-, y-, and 
z-axis. Element types may differ in the type of shape function which is either 
a bilinear or a biquadratic shape function, see Figure 4.3. The eight-node qua- 
drilateral is often a serendipity element, i.e. without an interior node. 

 The number of integration points for shell elements is usually five over 
the thickness. An increase in the number of integration points in regions where 
high bending stresses over the thickness are expected may overcome possible 
numerical difficulties.

Figure 4.3  –  Shape functions of quadrilateral shell finite elements  
(showing a perspective view of the shape function N1)
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The piecewise approximation of the mathematical model by finite  
elements inevitably leads to a discretisation error which should be reduced 
to a minimum. The accuracy of results may be increased according to [11] 
as categorised below:

 	 − h-method: Overall refinement of the mesh density.
 	 − r-method: Refinement of the mesh density in areas with high stress 

gradients.
 	 − p-method: Increase of the polynomial degree of the element’s shape 

function.

It is of utmost importance that the mesh density should be able to cover 
buckling shapes and stress gradients adequately. Figure 4.4 shows the results of 
a discretisation study on a square plate under bending for which finite elements 
with bilinear and biquadratic shape functions have been used. The deviation 
from the code rules is drawn over the number of elements per edge length. It 
can be shown that a refinement of the mesh density clearly leads to a reduction 
of the discretisation error. Besides that, it is found that biquadratic elements 
show a lower divergence and converge faster than bilinear elements.

Figure 4.4  –  Discretisation study

4. Modelling (Preprocessing)
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4.3   Boundary Conditions

According to Figure 4.4d, firstly a linear elastic bifurcation analysis 
was carried out and the first eigenvalue was determined. The quadratic ele-
ments converge quickly whereas the linear elements require roughly twice the 
number of elements. Though it is difficult to give general recommendations, 
it can be concluded that a sufficient number to cover a buckling halfwave is 
a number of six elements for the linear shape function and a number of four 
elements in case the quadratic shape function is used.

Secondly, a nonlinear buckling analysis including imperfections was 
carried out. At ultimate state, a nonlinear stress distribution occurs which may 
require a finer mesh density in order to cover the stress gradient adequately. 
From Figure 4.4e it can be shown that the quadratic element converges rapi- 
dly. In contrast to this, the linear element is not too bad, but it is slightly stiffer 
throughout which leads to slightly higher resistances.

4.3   BOUNDARY CONDITIONS

4.3.1  General

Modelling of the boundary conditions is decisive to ensure the correct 
structural behaviour of the analysed plate element or structure. The boundary 
conditions consist of all the support and loading conditions, which should be 
handled separately in the modelling phase, because their definition needs dif-
ferent considerations and they have different roles in the calculation process. 

The support conditions in the numerical model should be chosen to  
reflect in a realistic or conservative manner the behaviour of the physical 
supports in the real structure. Supports can be defined where direct supports 
(founding) or supporting structural members exist. The effect of the connecting 
structural elements can be included in the numerical model without the direct 
modelling of them by using support conditions, which helps to reduce the FE 
model size. Supports can be applied as well, if only a part of the entire structure 
is modelled (sub-models). In this case the stiffness conditions of the environ-
ment should be considered by the modelling the supports. 
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Modelling of loads can be also different. Direct loads or internal forces 
can be modelled by applying forces and bending moments directly on the 
nodes in the FE model. In this case the calculation process will be a load-con-
trolled analysis. Loads can be modelled by displacements as well, where the 
calculation process will be a displacement-controlled analysis. 

In the following sections possible support and loading models are in-
troduced, which can be applied by modelling of plated structures, or plated 
structural elements. 

4.3.2  Definition of supports

Supports are used to restraint structures against rigid body motions 
and to represent the supporting effect of the connecting structures or foun-
dations. The applied supports should be in accordance with the used finite 
element type. Degrees of freedom numbers which are available for the ap-
plied finite elements should be considered and the applied support should 
be harmonized by the DOFs. For the investigation of plated structures shell  
elements are commonly used having 6 DOFs per node. Volume elements 
have usually 3 DOFs per node, which has also influence on the applied sup-
port conditions. The supports of a simple plate can be modelled along the 
edges of the plate. The support conditions along each supported edge can 
be simply supported, semi-rigid or fixed. Fixed and simple supports can be 
directly applied on the nodes of the plate edges (Figure 4.5). If semi-rigid 
connections are to be modelled the nodes of the plate should be supported by 
springs which are connected to supported nodes (Figure 4.6). All the three 
different support models are presented in Figure 4.5 and Figure 4.6.

4. Modelling (Preprocessing)
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Figure 4.5  –  Supports for plates

Figure 4.6  –  Semi-rigid support conditions for plates

4.3   Boundary Conditions
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Two type of support conditions can be defined:

 	 − supports against displacements (x, y, z directions),
 	 − supports against rotations (around x, y, z axis).

Both types of supports can be defined directly on the nodes of the FE mo- 
del. However, they are not independent from each other in case of plated struc-
tures. It is possible to define rotational restraints by using only supports against 
displacements. Application of the displacement restraints along one edge gives 
a fixed (moment resistant) support to the plate in the perpendicular directions. 
It means that one must take care about the possible rotational restraints by ap-
plying only displacement supports in the model, which can result of unintended 
rotational support conditions. In the case of most of the engineering structures, 
this support model (support along the edges) is adequate and fits the boundary 
conditions of the real structures. But in specific cases the displacement supports 
along the edges may not give adequate result. There is another possibility to im-
plement a moment restraint in the model presented in Figure 4.7. In this case the 
vertical displacement of a band of nodes is fixed. The width of the band should 
be determined according to the stiffness of the plate. 

Figure 4.7  –  Modelling of moment restrained edges

If stiffness conditions of the connecting members or the supporting 
members should be implemented in the FE model, semi-rigid support con-
ditions can be applied instead of the rigid supports. The modelling of the 
semi-rigid supports can be defined by using springs or contact elements. If 
semi-rigid connection is to be defined, one row of nodes should be determined 

4. Modelling (Preprocessing)
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beside of the plate and the springs or the contact elements should be connected 
between the node of the plate and the additionally defined nodes. This support 
method is shown in Figure 4.8. In several FE programs the direction of the 
offset of the additional row should be in the working direction of the springs. 
In several FE programs the direction of the offset does not have any influence, 
the working direction of the springs can be defined by the properties of the 
element type. In several FE programs, the designer should work with coinci-
dent nodes, since some spring elements do not account for finite length, thus 
giving a moment imbalance. The type of the semi-rigid connection can be 
different (springs against displacement, springs against rotation, linear springs 
or non-linear springs), depending on the applied element properties. Using 
semi-rigid support model, the additionally defined nodes should be also sup-
ported avoiding an unconstrained model and rigid body motion.

Figure 4.8  –  Semi-rigid support model

If the analysed plate is a built-up section (for example with longitudinal 
stiffeners), the definition of the support conditions should be defined more 
carefully. If the same support model is used as by the simple plate (support 
along the plate edges) an eccentricity can be given to the structure, which can 
have influence on the failure mode and structural behaviour. Especially, in 
case of buckling analysis, the buckling direction can be significantly influ-
enced by the eccentric supports, therefore special care should be given to the 
support eccentricity. 

A more advanced and recommended solution to model supports on stif- 
fened plates is to apply supports in the center of gravity of the end cross sec-

4.3   Boundary Conditions
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tions. In this case, an extra node should be defined in the cross section center 
of gravity and all the nodes in the cross section should be coupled to this 
node by rigid elements or by constrained equations, as shown in Figure 4.9. 
Constraint equations provide many useful features, such as tying together dis-
similar meshes, representing parts of the system not explicitly modelled, or 
distributing loads and supports. These rigid members or constrained equations 
ensure that the end cross sections are kept as a plane and by applying pinned 
or fixed supports in the middle point supports can be modelled. This support 
model by using the above described rigid end cross section method has many 
advantages. Beside that pure pinned or fixed connections are possible to be 
achieved, the rigid end cross section works as a diaphragm as well. It means 
that the possible local failure at the load introduction location can be avoided, 
that is usually not preferred and it can reduce the ultimate resistance of the 
analysed structure. If the effect of the load introduction is investigated and it 
can have significant effect on the structural behaviour, the use of this support 
model is not recommended. It has to be noted that the supported nodes should 
be restrained against rotation along the longitudinal axis to avoid the rotation 
of the entire structure.

Figure 4.9  –  Advanced model of pinned/fixed support model of a stiffened plate

If only displacement restraints are used the end cross section will be 
fixed against rotation, but the sub-panels of the modelled structure will be still 
hinged (Figure 4.10a). If the rotations of the sub-panel are also to be fixed, rota-
tional restraints around the axis of the supported edge should be also used at all 
the nodes in the end cross section (Figure 4.10b). Difference between the two 
support models can be found by analysing the local buckling of the sub-panels.

4. Modelling (Preprocessing)
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