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Preface

Timber construction is actually one of the most innovative areas of the building
industry. This applies equally to developments in materials, joining and manufac-
turing technologies, as well as construction site logistics. The speed with which new
products are introduced into practical applications is almost breathtaking, espe-
cially when compared to the other construction materials in the building industry.
Consequently, timber construction is continuously increasing its market share in
commercial buildings and hall structures, and even in multi-storey constructions
for residential and office buildings. Hardly a month goes by without a new height
record being reported, even from countries that have not yet been counted among
the classic timber construction nations.

This book aims to provide essential knowledge and skills required for the design,
detailing and construction of timber structures for typical building structures.
Special emphasis is placed on the specific features of timber and wood-based
materials compared to other construction materials. This concerns the numerous
advantages, such as the comparatively low weight and the good workability of
this high-performance material, and the large variety of assembling technologies.
However, it also addresses the challenges resulting from the material anisotropy
and susceptibility to natural pests. Each chapter begins by explaining the essential
phenomena, which are then brought into connection with regulations mainly
taken from the different parts of EN 1995. This approach aims to support the basic
understanding of the interrelations and dependencies in timber engineering, which
forms the fundamental basis of creative engineering.

The individual chapters of the book are structured independently in terms of
content. One does not have to work through the book sequentially from beginning
to the end, but can start with the topic which seems to be the most interesting one.

The content of the book largely corresponds to the content of the ‘Timber
Engineering’ courses offered in the Bachelor’s and Master’s programmes in Civil
Engineering at the University of Kassel, and is based on the lecture notes that
were compiled there over the years. Carsten Pörtner, Martin Schäfers, Heiko Koch,
Lars Eisenhut, Tobias Vogt, Johannes Hummel, Michael Schick, Timo Claus,
Sascha Schwendner, Jens Frohnmüller and Giuseppe D’Arenzo have contributed
significantly to those classes. Annalena Funke, as student assistant, has taken great
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care to ensure a good and uniform graphic presentation. I would like to thank them
all very much for this.

My special thanks go to Johannes Hummel, who supervised the editing of the
lecture notes and co-authored the German version of several chapters of this book.

Kassel, December 2023 Werner Seim
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220 7 Structural Elements – Plane Constructions

7.2 Cross-laminated Timber (CLT)

7.2.1 Production, Load-bearing Characteristics and Strength

Cross-laminated timber (CLT) is a product that is particularly suitable for plane
load-bearing elements, such as for slabs and wall panels. Figure 7.13 shows typical
applications of CLT for slabs, load-bearing and bracing walls and deep beams. The
use of CLT is only permitted in service classes 1 and 2. The durability of the bonding
has been verified for the expected moisture content in these service classes.

Panels made of CLT are used, for example, for slabs or as load-bearing elements
for flat roofs or flat pitched roofs (see Figure 7.13) and are mainly uniaxially spanned
due to the joints that result from the elements being arranged next to each other.
The outermost layers define the primary direction (see Figure 7.14). However, the
transverse layers can also transfer loads in the secondary direction. The biaxial
load-bearing effect allows point supports and offers advantages when transferring
concentrated loads.

Slab element

Beam (glulam)

Column (gluam)

Short wall

Wall element

Element joints and connections

Deep
beam

Figure 7.13 Building structure with CLT.
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Board material
(usually side material)

proportion b:d ≥ 4:1 Board thickness:
d = 10 to 35 mm

Board lamella

Finger joints

Cross laminated timber (CLT)
Combination of
longitudinal and transverse
one-layer panels

Plane bonding of
one-layer panels with
certified adhesives

Middle layers

Board width:
b = 80 to 240 mm

Board material (side material)
used as raw material for the
production of CLT

Finger-jointed board lamellas
with parallel, profiled or
conical cross section

One-layer panels
Made of side-by-side
arranged board lamellas
(with/without side bonding)

One-layer panel
(Longitudinal

orientation)

One-layer panel
(Transverse
orientation)

Element length:
due to production up to max,
16.5 m and with general finger
joints due to transport conditions
up to 30.0 m

Element width:
due to production up to

3.0 m and due to transport/
fitting up to 4.8 m

Example of a 5-layer element
of cross laminated timber
(number of layers varies
between 3 and 11)

Outer, longitudinal layer, usually
C24 (S10) to C30 (S13)

Inner, transverse layer, usually
C16 (S7) to C30 (S13)

Side bonding
of transverse layer

Side bonding
of longitudinal layer

Finish layers

Element thickness: 
42 mm bis 500 mm

Figure 7.14 Structure of CLT – from single-board lamella to plane elements.

CLT consists of a minimum of three layers. The basic elements are boards, which
can also be cut from the edge zone of the trunk (side material). The side material
achieves material properties that are in the range of strength classes C24 (S10) and
higher. Preferably, board lamellae with strength class C24 are used, although boards
with strength classes C16 and C18 are also sometimes taken for the cross layers. The
board lamellae are mainly made of soft woods like spruce and fir.
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First, a so-called endless lamella is produced from the individual boards. For this
purpose, as in the production of glulam, the individual boards are joined by fin-
ger joints after single sections with larger knots have been cut out. The dimensions
of the board lamella usually range from 80 to 240 mm in width and 10 to 40 mm
in thickness. The board lamellae are planed (the edges can be profiled) and sawn
to the required length (see Figure 7.14). For the production of panels, the board
lamellae are arranged next to each other in such a way that the finger joints are
offset from each other by a minimum of 1/3 of the board width. If there are higher
demands about air tightness, sound insulation or appearance, the side edges of the
board lamellae can be glued to each other (edge gluing). However, this is not offered
by all manufacturers.

The individual board layers are stacked in alternating longitudinal and transverse
orientation, with the number of layers varying between 3 and 11. The individual
layers can have different thicknesses depending on the structural requirements. An
adhesive is applied between the individual board layers. PU adhesives, melamine
resins and resorcinol resins are used. The board lamellae have a moisture content of
about 10% when glued.

A pre-defined contact pressure is required to ensure plararity and adhesive bond-
ing. For this purpose, the layers are ‘stacked’ and the adhesive is applied in a so-called
press bed (see Figure 7.15). There, the surface pressure of all layers is applied with a
contact pressure in the range of 0.6–0.8 N/mm2. The press bed is heated to shorten
the time the adhesive needs to cure.

The pressing is followed by the finishing and the joinery. The elements are usu-
ally manufactured in the dimensions requested by the customer. The dimensions
are limited by the size of the pressing device as well as by boundary conditions dur-
ing transportation and assembly. CLT elements can be up to 3.0 m wide and up to
16.0 m long. Some manufacturers can also produce dimensions of up to 4.8 m× 30 m
(width× length). For such long CLT elements, two shorter elements may have to be
connected to each other using large finger joints.

For the required visual quality, the surfaces are either planed again or at least
sanded to remove adhesive residues.

(a) (b)

Figure 7.15 Production of CLT elements: (a) adhesive application; (b) addition of panels to
be transferred to the press bed. Source: Poppensieker & Derix, Westerkappel.
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(a) (b)

Figure 7.16 CLT wall elements (a) on CNC trimming line; (b) with cut-outs for electrical
installations; Source: Poppensieker & Derix, Westerkappel.

Plane stress resultants

Plate stress resultants

Stress components in layer i

Shear joint
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τxy,i

τzy,i

τxz,i

τyx,i
τyz,i

σz,i

σy,i

nx
nxy

mxy

myz

my mx vx
vy

nyxny

σx,i

y

x

x

y

y

z 0°
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Figure 7.17 Definition of section forces and stresses for CLT slabs and panels.

During the trimming line procedure, window and door openings, ceiling open-
ings and, if necessary, cut-outs, for example, for connections or installation lines,
are made (see Figure 7.16).

Due to the layered structure of CLT, the stresses and deformations cannot be deter-
mined as with a monolithic cross section. The orthogonal structure of each layer
determines the magnitude and distribution of the stresses throughout the height of
the cross section. In the typical regular structures, in which longitudinal and trans-
verse layers alternate, only every second layer participates in the transfer of bending
moments and normal forces. In addition, the rolling shear stress of the respective
intermediate layer is of particular importance for both plates and panels.

In Figure 7.17, plate and panel internal forces are given with reference to an x-y-z
coordinate system as well as the associated stresses for layer i. When defining the
bending moments, it should be noted that the index corresponds to the associated
bending stress. Thus, a bending moment mx causes bending stresses in the direction
of the x-axis, but ‘rotates’ around the y-axis.

The material properties of CLT elements are currently still regulated in techni-
cal approvals. For this reason, a range of characteristic values is given in Table 7.1,
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Table 7.1 Material values for CLT.

Strength (N/mm2) Modulus of Elasticity (N/mm2)

f m,k 24.0 E0,mean 11.000–12.000
f t,0,k 14.0–16.5 E90,mean 370
f t,90,k 0.12–0.4–0.5 Gmean 600–690–720
f c,0,k 21.0–24.0 Gr,mean 50–69
f c,90,k 2.5–2.7 E0.05 = 5/6 ⋅E0,mean and G05 = 5/6 ⋅Gmean

f v,90,k
a) 0.8–1.5 Density (kg/m3)

f v,k
b) ,c) 1.6–3.5 𝜌k 350–380

f v,tor,k
b) 2.5 𝜌mean 420–450

a) Plates loaded perpendicular to the plane.
b) In-plane loaded panels.
c) In some technical documentations it is referred to values for fictive shear

strength.

which can be found in the various approvals based on a strength of C24 of the lamel-
lae of the outermost layer. These values can be considered strength if the stresses
acting on the composite cross section are determined using the calculation meth-
ods explained in the following sections. For individual products, design values of
the load-bearing capacities and stiffnesses are also given as tabulated values in the
technical documentation.

As modification coefficients kmod for the strengths and kdef for the deformations,
the values specified for glulam can be used (see Section 2.1.2).

7.2.2 Plates

7.2.2.1 Bending and Shear Stiffness
The procedure for determining the stiffness values in order to carry out the calcula-
tions of the stresses is shown exemplarily for the x-direction. The x-direction follows
the fibre direction of the outer layers and thus becomes the main load-bearing direc-
tion. For the y-direction, the stiffness values can be determined in the same way. The
following considerations refer to a panel strip of one meter width.

The individual lamellae of a cross section of CLT, when subject to bending stress,
are flexibly connected by transverse layers. This leads to higher bending edge stresses
𝜎x,max compared to the rigid bond, as illustrated in Figure 7.18. Due to the lack of
edge bonding or because of unavoidable shrinkage cracks parallel to the grain, the
transverse layers typically do not participate in load transfer in the event of bending
stress in the x-direction.

The influence of the shear deformation of the transverse layers on the stresses of
the longitudinally arranged lamellae depends not only on their thickness and the
rolling shear modulus but also on the loading and the static system. Under certain
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Flexible bond

Without edge bonding

Rigid bond

σx,max

M

x

z

d

Figure 7.18 Bending stresses for rigid and flexible bond; section with five layers without
bonding of the side faces, according to Mestek (2011).

conditions, the influence is so small that the determination of the stresses is suffi-
ciently accurate for the assumption of rigid bond. In this context, the bending slen-
derness of the element plays a decisive role. The bending slenderness is defined as
the ratio of the span length li of the ideal single-span beam (see Figure 6.21) to the
thickness d of the component.

Studies by Guggenberger and Moosbrugger (2006) and Mestek (2011) have
shown that for single-span systems under uniform load with a bending slenderness
li/d≥ 20, the assumption of a rigid bond provides sufficiently accurate results.
The deviation in the bending edge stress is less than 2% from the correct solution
with a flexible bond. Consequently, the stiffness contribution of the intermediate
layer is therefore neglected. For a more precise consideration, one can refer to the
explanations on the composite beams in Sections 11.4 and 6.3.

The bending stiffness (EI)x of a panel strip with width 1 is composed of the stiff-
nesses of the single lamella and the Steiner components.

(EI)x =
n∑

i=1

(
Ex,i ⋅ d3

i ∕12
)
+

n∑
i=1

(
Ex,i ⋅ di ⋅ z2

s,i

)
(7.3)

The geometric relationships are shown in Figure 7.19. In most cases, the cross
sections are symmetrical. The transverse layers are neglected when determining the
bending stiffness and the stresses.

Without edge bonding

Cross section Effective cross section

Neutral axis
Ex,1 = E0

Ex,3 = E0

Ex,5 = E0

Ex,2 = 0

Ex,4 = 0

d1 zs,1d2 dx

z

i = 1

i = n

Figure 7.19 Geometric relationships and transition to the effective cross section.
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If the cross section consists of layers with different MOIs, a reference value E0 can
be chosen, and an effective area moment of inertia can be specified as

Ief,x =
(EI)x

E0
(7.4)

If the MOI is the same for all layers, then the following applies for the main
load-bearing direction.

Ief,x =
∑

d3
i ∕12 +

∑(
di ⋅ z2

s,i

)
i = 1, 3, 5,… (7.5)

This equation also applies to the transverse direction if the values 2, 4, etc. are used
for i.

Ief,y =
∑

d3
i ∕12 +

∑(
di ⋅ z2

s,i,

)
i = 2, 4,… (7.6)

Since the individual board layers are glued together over their entire surface, it
can be assumed that shear deformation between the layers arranged in one direction
occurs due to the rolling shear stress of the respective transverse layer.

There are different approaches to take this relationship into account. Mestek
(2011) defines an equivalent shear stiffness based on the shear analogy method.
The relationship between shear deformation and equivalent shear stiffness (GA)xz
is illustrated in Figure 7.20.

The equivalent shear stiffness can be calculated using Eq. (7.7) and results from
the equalisation of the total deformation u from shear at the layered cross section
and the shear deformation of the homogeneous equivalent cross section.

(GA)ef,xz = a2 ⋅

[
d1

2 ⋅ Gxz,1
+

n−1∑
i=2

di

Gxz,i
+

dn

2 ⋅ Gxz,n

]−1

(7.7)

In this equation, it should be noted that the shear modulus (for i = 1, 3, 5,…) and
the rolling shear modulus (for i = 2, 4,…) must be used alternately for Gxz.

For commonly used cross sections, this approach yields values that are about 10%
of the shear stiffness of a monolithic timber cross section. The shear analogy method
assumes a constant shear flow over the cross section height and therefore provides
comparatively low values for the equivalent shear strength. Wallner-Novak et al.
(2013) consider a shear-soft Timoshenko beam and determine reduction factors

nxy · di

(GA)xz

(GA)xy

a

nxy

nxy

x
z

Gi

nxy · di nxy · a2

Gi

ui =

ui =u = u =

Figure 7.20 Shear deformations of the layers and calculation of fictive shear stiffness,
according to Mestek (2011).
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that are approximately between 0.2 and 0.3, depending on the number of layers.
This results in a conservative approach for the shear stiffnesses as follows:

(GA)ef,xz = 0.2 ⋅ G ⋅
∑

Ai i = 1, 3, 5,… (7.8)

(GA)ef,yz = 0.2 ⋅ G ⋅
∑

Ai i = 2, 4,… (7.9)

Due to the layered construction, also the torsional stiffness is reduced. If no precise
knowledge is available, then the torsional stiffness should be neglected:

(EI)xy = 0 and (EI)yx = 0. (7.10)

7.2.2.2 Uniaxial Load Bearing
The beam theory is largely sufficient to determine the internal forces of uniaxi-
ally spanned CLT panels under uniform load. For systems with bending slender-
nesses <20, the stresses for the flexible connected layers should be calculated with
coupled beams or with an FE model. For this purpose, the procedure explained in
Section 7.3.1 can be used.

The bending stress 𝜎x for layer i is calculated as follows:

𝜎m,x,i =
mx ⋅ Ex,i

(EI)x
⋅ z (7.11)

With uniform modulus of elasticity, Eq. (7.11) simplifies to:

𝜎m,x =
mx

Ief,x
⋅ z (7.12)

with the effective area moment of inertia Ief,x according to Eq. (7.5).
To determine the shear stress distribution, the static moments Sx at the transition

from lamella i to i+ 1 are required. These result from the area of the individual cross
sections and the corresponding distance zs,j.

(ES)x,i∕i+1 =
n∑

j=i+1
Ex,j ⋅ dx,j ⋅ zs,j (7.13)

If Ex = 0 is assumed for the transverse layers and with a uniform modulus of elas-
ticity in the x-direction, the equation can also be simplified here to

Sx,i∕i+1 =
n∑

j=i+1
dx,j ⋅ zs,j (7.14)

The shear stress at the transition between layer i and i+ 1 is then determined for
the shear force vx to be

𝜏xz,i∕i+1 =
Sx,i∕i+1

Ief,x
⋅ vx (7.15)

The course of the bending and shear stresses is shown in Figure 7.21 for the
longitudinal and transverse directions. Note that the shear stresses in the lamella
running transversely to the load-bearing direction act as rolling shear stresses (see
Figure 7.22), which is a characteristic of CLT construction.
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Figure 7.21 Bending and shear stresses for CLT plates: (a) main direction; (b) transverse
direction.

ττ

ττ

(a) (b)

Rolling shear

MM VV

Figure 7.22 Shear-stressed CLT plates: (a) shear stresses of the transverse layer; (b) rolling
shear failure of the transverse layers. Source: Institut für Holzbau und Holztechnologie, TU
Graz.

When verifying the bending stresses, it may be taken into account that the load
in CLT is borne simultaneously by several parallel board lamellae, which are cou-
pled with each other via the transverse layer. Due to statistical effects, the bending
strength can be increased by a system coefficient kl.

𝜎m,d

kl ⋅ fm,d
≤ 1 (7.16)

with

kl = min
{

1 + n ⋅ 0.025
1.1

(7.17)

The parameter n stands for the number of adjacent lamellae that are stressed. The
number of adjacent lamellae is determined for the spread width of the corresponding
loading and is limited to n= 4.

In addition to the usual shear stress verification
𝜏v,d

fv,d
≤ 1 (7.18)

the verification against rolling shear stress must also be carried out. The design value
of the maximum shear stress in the lamella transverse to the considered load-bearing
direction is to be used for 𝜏v,90,d:

𝜏v,90,d

fv,90,d
≤ 1 (7.19)

Information on characteristic values of the rolling shear strength can be found in
Table 6.2.
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7.2.2.3 Biaxial Load Bearing
If CLT elements are to be used for biaxial load transfer, the orthotropic load-bearing
behaviour must be taken into account in the calculation of the internal forces and
in the verifications in the serviceability limit state.

CLT is constructed orthogonally in layers. This means that a biaxial load transfer
can occur in the case of a bending load, and bending and shear stresses then arise
both in the direction of the outer layers (primary load-bearing direction) and in the
transverse direction (secondary load-bearing direction). Thus, bending stresses can
be directed around openings and a transverse distribution under single loads is made
possible. However, biaxial load transfer is in most cases limited to local areas due
to the joints between the individual elements (see Figure 7.13). The internal forces
can be determined for an orthogonal plate using a finite element calculation, taking
into account the longitudinal and transverse stiffness (x- and y-directions) for bend-
ing and shear. How the corresponding stiffnesses are determined has already been
explained at the beginning of this section. In any case, the position and design of the
joints must be taken into account in the calculation model.

For slenderness li/d≥ 20, a calculation with an FE programme based on plate the-
ory can be carried out if the orthotropy is taken into account when defining the
stiffnesses (Figure 7.23). Cross-sections with li/d< 20 are to be calculated as layered
coupled cross sections considering the flexible shear connection. Additional infor-
mation is provided in Section 7.3.1. Stress verifications are carried out for both x- and
y-directions according to Eq. (7.16).

7.2.2.4 Single Loads
For slabs with point supports or single loads, it is advisable to calculate the internal
forces with an FE programme. Special attention is then paid to the introduction of
concentrated forces acting perpendicular to the slab, whether as concentrated load
or as reaction force at the support. Figure 7.24 shows examples of situations where

(a) (b)

mx

my

y

z

x

Figure 7.23 Section forces (bending moments mx, my) and reaction forces of a plate
(a) with distributed load, point supports and opening; (b) with linear support and single
load at midspan.
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kc,90 = 1.9

kc,90 = 1.4

lA

lA

lef

lef

30 30

30

2d

d

b
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Edge

Figure 7.24 Areas with concentrated
loads – single load or point support, according
to Wallner-Novak et al. (2013).

Table 7.2 Load arrangement factor kc,90.

Position Center Edge Corner

kc,90 1.9 1.4

concentrated forces are introduced. In addition to the verification of the transverse
compression stress, the high shear stress – in analogy to verification for reinforced
concrete plates the punching shear – plays a decisive role.

The verification of compression perpendicular to the grain is carried out as for
beam-type components (see Section 3.2). The spreading of the load to determine
the effective area is only taken into account parallel to the grain direction of the
outermost layers. The load arrangement factors were adjusted and can be found in
Table 7.2.

Mestek (2011) developed a three-step calculation method for the verification of
shear forces in the area of concentrated loads. In the first two steps, proportional
shear forces and effective widths are determined for the main and secondary
load-bearing directions, depending on the position – centre, edge or corner – of the
load application area (Figure 7.25). Two coefficients are then introduced into the
subsequent calculation of the rolling shear stresses. The first coefficient, kR, takes
into account the more uniform stress distribution over the cross section height with
increasing number of layers, and the second coefficient, kA, accounts for the stress
peaks in corner and edge areas.
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Figure 7.25 Load introduction, critical section cut and effective width: (a) central position;
(b) corner or edge position.

The following applies to central position of the load application:

𝜏v,90,xz =
Vx∕bef,x

kR,x ⋅ (dx + dy)
(7.20)

𝜏v,90,yz =
Vy∕bef,y

kR,y ⋅ (dx + dy)
(7.21)

with shares of the shear force and effective width

Vx ≈ 0.33 ⋅ n−0.1 ⋅ F (7.22)

Vy ≈ 0.5 ⋅ F − Vx (7.23)

bef,x = bA,x + d ⋅ tan(35∘) (7.24)

bef,y = bef,x (7.25)

For loading positions at the corner, applies

𝜏v,90,xz =
Vx∕bef,x

kR,x ⋅ (dx + dy)
⋅ kA (7.26)

𝜏v,90,yz =
Vy∕bef,y

kR,y ⋅ (dx + dy)
⋅ kA (7.27)

with shares of the shear force and effective width

Vx ≈ 0.67 ⋅ n−0.1 ⋅ F (7.28)

Vy ≈ F − Vx (7.29)



232 7 Structural Elements – Plane Constructions

Table 7.3 Factors kR and kA according to Mestek (2011).

n 5 7 9 11

kR,x [−] 2.00 2.50 3.33 3.89
kR,y [−] 1.00 2.00 2.50 3.33

bA,x /d resp. bA,y /d ≤1.0 ≤1.5 ≤2.0

kA [−] 1.35 1.50 1.65

bef,x = bA,x + d∕2 ⋅ tan(35∘) (7.30)

bef,y = bef,x (7.31)

The corresponding coefficients are given in Table 7.3.
The method is applicable for CLT elements with square loaded areas that have a

symmetrical cross section with a minimum of five and a maximum of 11 layers of
equal thickness (dx = dy).

For a load application parallel to the edge, shear force, effective length and rolling
shear stress can be assumed for the load transfer as for the corner area. For the load
transfer perpendicular to the edge, the transverse force component is obtained from
the equilibrium condition, and the contributing width and rolling shear stress can
be determined here as for an introduction in the centre.

These considerations are based on the critical circular section with a spreading
angle of 35∘. The check of the shear stresses is carried out according to Eq. (7.19).

If the design conditions in the load application area are not fulfilled, the contact
area can be increased. Another possibility is to reinforce the critical area by means of
inclined fully threaded screws. Calculation methods for this can be found in Mestek
(2011), among others.

7.2.2.5 Deflections
For the dimensioning of CLT slab panels, the deflections are also particularly rel-
evant. In addition to pure bending deformation, CLT panels also experience shear
deformation, which is mainly due to the flexible shear connection of the transverse
layers (see Figure 7.20).

For the single-span beam under uniform loading, the deflection can be calculated
from the sum of the bending and shear contributions:

w = wB + wS =
5 ⋅ q ⋅ l4

384 ⋅ (EI)x
+

q ⋅ l2

8 ⋅ (GA)xz
(7.32)

However, the share of shear deformation is comparatively low for slender
load-bearing elements.

The calculation of natural frequencies for CLT elements is dealt with in
Section 8.2. For more complex systems, such as point-supported CLT slab panels,
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the deflections and natural frequencies can be determined using FE calcula-
tions. Information on how to take the orthotropic structure into account in such
calculations can be found in Section 7.3.1

Fact Sheet 7.2
CLT slab element – distributed load and linear support

1. Calculate action combinations and section forces (see Fact sheet 2.1)
2. Calculate bending stresses – consider only the lamella oriented in the

stressed direction,
− if li/d ≥ 20: assume rigid bond
− if li/d < 20: consider elastic bond, e.g. with γ-method.

3. Check design consideration for bending
take strength from product declaration,
increase strength with system coefficient kl

4. Calculate shear stresses
5. Check design consideration for rolling shear stresses
6. Check requirements for SLS

calculate stiffness depending on slenderness li/d, consider elastic bond if nec-
essary (see step 2)

7.2.3 Wall Panels

CLT panels are also well suited for load-bearing and bracing walls. In this case, the
elements are mainly in-plane loaded by vertical loads (e.g. from the slabs) and by
horizontal loads (e.g. from wind or earthquakes). The vertical action results in a
risk of buckling, and the wall experiences shear stress from the horizontal in-plane
action. When used as exterior walls, wall elements must also take wind loads that
act perpendicular to the surface.

7.2.3.1 In-plane Stiffness
If CLT elements are in-plane loaded in the normal direction, information on the
corresponding elongation stiffness (EA)x is required:

(EA)x =
n∑

i=1
(Ex,i ⋅ di) i = 1, 3, 5,… (7.33)

As with the bending stiffness, the lamellae perpendicular to the load-bearing
direction can also be neglected here. The elongation stiffness (EA)y can be
determined analogously.

The shear stiffness (GA)xy can be determined according to Moosbrugger et al.
(2006) with the introduction of an effective shear modulus Gef,xy:

Gef,xy =
Gmean

1 + 6 ⋅
[

0.32 ⋅
(

dm
bm

)−0.77
]
⋅
(

dm
bm

)2
(7.34)
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