TABLE OF CONTENTS

0 Structural calculations
 0.1 General
 0.2 Safety concept
 0.3 Calculations for waterfront structures

1 Subsoil
 1.1 Mean characteristic values of soil parameters (R 9)
 1.2 Layout and depths of boreholes and penetrometer tests (R 1)
 1.3 Geotechnical report (R 150)
 1.4 Determining the shear strength cu of saturated, undrained cohesive
 1.5 Assessing the subsoil for the installation of piles and sheet piles and for selecting
 the installation method (R 154)

2 Active and passive earth pressure
 2.1 General
 2.2 Considering the cohesion in cohesive soils (R 2)
 2.3 Considering the apparent cohesion (capillary cohesion) in sand (R 3)
 2.4 Determining active earth pressure according to the Culmann method
 2.5 Active earth pressure in stratified soil (R 219)
 2.6 Determining active earth pressure for a steep, paved embankment in a partially
 sloping waterfront structure (R 198)
 2.7 Determining the active earth pressure shielding on a wall below a relieving platform
 with average ground surcharges (R 172)
 2.8 Earth pressure distribution under limited loads (R 215)
 2.9 Determining active earth pressure in saturated, non- or partially consolidated, soft
 cohesive soils (R 130)
 2.10 Effect of artesian water pressure under harbour bottom or river bed on active and
 passive earth pressures (R 52)
 2.11 Considering active earth pressure and excess water pressure, and construction
 guidance for waterfront structures with soil replacement and contaminated or
 disturbed base of excavation (R 110)
 2.12 Effect of groundwater flow on excess water pressure and active and passive earth
 pressures (R 114)
 2.13 Determining the amount of displacement required for mobilising passive earth
 pressure in non-cohesive soils (R 174)
 2.14 Measures for increasing the passive earth pressure in front of waterfront structures
 (R 164)
 2.15 Passive earth pressure in front of abrupt changes in ground level in soft cohesive
 soils with rapid load application on land side (R 190)
 2.16 Waterfront structures in seismic regions (R 124)

3 Hydraulic heave failure, ground failure
 3.1 Safety against hydraulic heave failure (R 115)
 3.2 Piping (ground failure due to internal erosion) (R 116)
4 Water levels, water pressure, drainage
4.1 Mean groundwater level (R 58)
4.2 Excess water pressure in direction of water side (R 19)
4.3 Excess water pressure on sheet piling in front of embankments below elevated platforms in tidal areas (R 65)
4.4 Design of weepholes for sheet piling structures (R 51)
4.5 Design of drainage systems for waterfront structures in tidal areas (R 32)
4.6 Relieving artesian pressure beneath harbour bottoms (R 53)
4.7 Taking account of groundwater flow (R 113)
4.8 Temporary stabilisation of waterfront structures by groundwater lowering (R 166)

5 Ship dimensions and loads on waterfront structures
5.1 Ship dimensions (R 39)
5.2 Berthing force of ships at quays (R 38)
5.3 Berthing velocities of ships transverse to berth (R 40)
5.4 Design situations (R 18)
5.5 Vertical imposed loads (R 5)
5.6 Determining the “design sea state” for maritime and port structures (R 136)
5.7 Wave pressure on vertical quay walls in coastal areas (R 135)
5.8 Loads arising from surging and receding waves due to the inflow or outflow of water (R 185)
5.9 Effects of waves due to ship movements (R 186)
5.10 Wave pressure on piled structures (R 159)
5.11 Wind loads on moored ships and their influence on the dimensioning of mooring and fender equipment (R 153)
5.12 Layout of and loads on bollards for sea-going vessels (R 12)
5.13 Layout, design and loading of bollards for inland facilities (R 102)
5.14 Quay loads from cranes and other transhipment equipment (R 84)
5.15 Impact and pressure of ice on waterfront structures, fenders and dolphins in coastal areas (R 177)
5.16 Impact and pressure of ice on waterfront structures, piers and dolphins at inland facilities (R 205)
5.17 Loads on waterfront structures and dolphins caused by fender reaction forces (R 213)

6 Configuration of cross-sections and equipment for waterfront structures
6.1 Standard cross-section dimensions for waterfront structures in seaports (R 6)
6.2 Top edges of waterfront structures in seaports (R 122)
6.3 Standard cross-sections for waterfront structures in inland ports (R 74)
6.4 Sheet piling waterfronts on inland waterways (R 106)
6.5 Upgrading partially sloped waterfronts in inland ports with large water level fluctuations (R 119)
6.6 Design of waterfront areas in inland ports according to operational aspects (R 158)
6.7 Nominal depth and design depth of harbour bottom (R 36)
6.8 Strengthening waterfront structures for deepening harbour bottoms in seaports (R 200)
6.9 Embankments below waterfront wall superstructures behind closed sheet pile walls (R 68)
6.10 Redesign of waterfront structures in inland ports (R 201)
6.11 Provision of quick-release hooks at berths for large vessels (R 70)
6.12 Layout and design of and loads on access ladders (R 14)
6.13 Layout and design of stairs in seaports (R 24)
6.14 Equipment for waterfront structures in seaports with supply and disposal systems (R 173)
6.15 Fenders for large vessels (R 60)
6.16 Fenders in inland ports (R 47)
6.17 Foundations to craneways on waterfront structures (R 120)
6.18 Fixing crane rails to concrete (R 85)
6.19 Connection of expansion joint seal in reinforced concrete bottom to loadbearing steel sheet pile wall (R 191)
6.20 Connecting steel sheet piling to a concrete structure (R 196)
6.21 Floating berths in seaports (R 206)

7 Earthworks and dredging
7.1 Dredging in front of quay walls in seaports (R 80)
7.2 Dredging and hydraulic fill tolerances (R 139)
7.3 Hydraulic filling of port areas for planned waterfront structures (R 81)
7.4 Backfilling of waterfront structures (R 73)
7.5 In situ density of hydraulically filled non-cohesive soils (R 175)
7.6 In situ density of dumped non-cohesive soils (R 178)
7.7 Dredging underwater slopes (R 138)
7.8 Subsidence of non-cohesive soils (R 168)
7.9 Soil replacement along a line of piles for a waterfront structure (R 109)
7.10 Dynamic compaction of the soil (R 188)
7.11 Vertical drains to accelerate the consolidation of soft cohesive soils (R 93)
7.12 Consolidation of soft cohesive soils by preloading (R 179)
7.13 Improving the bearing capacity of soft cohesive soils with vertical elements (R 210)

8 Sheet piling structures
8.1 Materials and construction
8.1.1 Design and installation of timber sheet pile walls (R 22)
8.1.2 Design and installation of reinforced concrete sheet pile walls (R 21)
8.1.3 Design and installation of steel sheet pile walls (R 34)
8.1.4 Combined steel sheet piling (R 7)
8.1.5 Shear-resistant interlock connections for steel sheet piling (R 103)
8.1.6 Quality requirements for steels and dimensional tolerances for steel sheet piles (R 67)
8.1.7 Acceptance conditions for steel sheet piles and steel piles on site (R 98)
8.1.8 Corrosion of steel sheet piling, and countermeasures (R 35)
8.1.9 Danger of sand abrasion on sheet piling (R 23)
8.1.10 Blasting to assist the driving of steel sheet piles (R 183)
8.1.11 Driving steel sheet piles (R 118)
8.1.12 Driving combined steel sheet piling (R 104)
8.1.13 Monitoring during the installation of sheet piles, tolerances (R 105)
8.1.14 Noise control – low-noise driving (R 149)
8.1.15 Driving of steel sheet piles and steel piles at low temperatures (R 90)
8.1.16 Repairing interlock declutching on driven steel sheet piling (R 167)
8.1.17 Reinforced steel sheet piling (R 176)
8.1.18 Design of piling frames (R 140)
8.1.19 Design of welded joints in steel piles and steel sheet piles (R 99)
8.1.20 Cutting off the tops of driven steel sections for loadbearing welded connections (R 91)
8.1.21 Watertightness of steel sheet piling (R 117)
8.1.22 Waterfront structures in regions with mining subsidence (R 121)
8.1.23 Vibratory driving of U- and Z-section steel sheet piles (R 202)
8.1.24 Water-jetting to assist the driving of steel sheet piles (R 203)
8.1.25 Pressing of U- and Z-section steel sheet piles (R 212)
8.2 Design of sheet piling
8.2.1 General
8.2.2 Free-standing sheet piling structures (R 161)
8.2.3 Design of sheet piling structures with fixity in the ground and a single anchor (R 77)
8.2.4 Design of sheet pile walls with double anchors (R 134)
8.2.5 Applying the angle of earth pressure and the analysis in the vertical direction (R 4)
8.2.6 Taking account of unfavourable groundwater flows in the passive earth pressure zone (R 199)
8.2.7 Verifying the loadbearing capacity of the elements of sheet piling structures (R 20)
8.2.8 Selection of embedment depth for sheet piling (R 55)
8.2.9 Determining the embedment depth for sheet pile walls with full or partial fixity in the soil (R 56)
8.2.10 Steel sheet piling with staggered embedment depths (R 41)
8.2.11 Horizontal actions on steel sheet pile walls in the longitudinal direction of the quay (R 132)
8.2.12 Design of anchor walls fixed in the ground (R 152)
8.2.13 Staggered arrangement of anchor walls (R 42)
8.2.14 Steel sheet piling founded on bedrock (R 57)
8.2.15 Waterfront sheet piling in unconsolidated, soft cohesive soils, especially in connection with non-sway structures (R 43)
8.2.16 Design of single-anchor sheet piling structures in earthquake zones (R 125)
8.3 Design of cofferdams
8.3.1 Cellular cofferdams as excavation enclosures and waterfront structures (R 100)
8.3.2 Double-wall cofferdams as excavation enclosures and waterfront structures (R 101)
8.3.3 Narrow moles in sheet piling (R 162)
8.4 Walings, capping beams and anchor connections
8.4.1 Design of steel walings for sheet piling (R 29)
8.4.2 Verification of steel walings (R 30)
8.4.3 Sheet piling walings of reinforced concrete with driven steel anchor piles (R 59)
8.4.4 Steel capping beams for sheet piling waterfront structures (R 95)
8.4.5 Reinforced concrete capping beams for waterfront structures with steel sheet piling (R 129)
8.4.6 Steel nosings to protect reinforced concrete walls and capping beams on waterfront structures (R 94)
8.4.7 Auxiliary anchors at the top of steel sheet piling structures (R 133)
8.4.8 Screw threads for sheet piling anchors (R 184)
8.4.9 Sheet piling anchors in unconsolidated, soft cohesive soils (R 50)
8.4.10 Design of protruding quay wall corners with round steel tie rods (R 31)
8.4.11 Design and calculation of protruding quay wall corners with raking anchor piles (R 146)
8.4.12 High prestressing of anchors of high-strength steel for waterfront structures (R 151)
8.4.13 Hinged connections between driven steel anchor piles and steel sheet piling structures (R 145)
8.5 Verification of stability for anchoring at the lower failure plane (R 10)
8.5.1 Stability at the lower failure plane for anchorages with anchor walls
8.5.2 Stability at the lower failure plane in unconsolidated, saturated cohesive soils
8.5.3 Stability at the lower failure plane with varying soil strata
8.5.4 Verification of stability at the lower failure for a quay wall fixed in the soil
8.5.5 Stability at the lower failure plane for an anchor wall fixed in the soil
8.5.6 Stability at the lower failure plane for anchors with anchor plates
8.5.7 Verification of safety against failure of anchoring soil
8.5.8 Stability at the lower failure plane for quay walls anchored with anchor piles or grouted anchors at one level
8.5.9 Stability at the lower failure plane for quay walls with anchors at more than one level
8.5.10 Safety against slope failure

9. Tension piles and anchors (R 217)
9.1 General
9.2 Displacement piles
9.3 Micropiles
9.4 Special piles
9.5 Anchors
10. **Quay walls and superstructures in concrete**
 10.1 Design principles for quay walls and superstructures in concrete (R 17)
 10.2 Design and construction of reinforced concrete components in waterfront structures (R 72)
 10.3 Formwork in areas affected by tides and waves (R 169)
 10.4 Box caissons as waterfront structures in seaports (R 79)
 10.5 Compressed-air caissons as waterfront structures (R 87)
 10.6 Design and construction of block-type quay walls (R 123)
 10.7 Design of quay walls using open caissons (R 147)
 10.8 Design and construction of solid waterfront structures (e.g. blocks, box caissons, compressed-air caissons) in earthquake zones (R 126)
 10.9 Use and design of bored cast-in-place piles (R 86)
 10.10 Use and design of diaphragm walls (R 144)
 10.11 Survey prior to repairing concrete components in hydraulic engineering structures (R 194)
 10.12 Repairing concrete components in hydraulic engineering structures (R 195)

11. **Pile bents and trestles**
 11.1 General
 11.2 Calculating subsequently strengthened pile bents/trestles (R 45)
 11.3 Design of plane pile bents (R 78)
 11.4 Design of spatial pile trestles (R 157)
 11.5 Design of piled structures in earthquake zones (R 127)

12. **Protection and stabilisation structures**
 12.1 Embankment stabilisation on inland waterways (R 211)
 12.2 Slopes in seaports and tidal inland ports (R 107)
 12.3 Use of geotextile filters in bank and bottom protection (R 189)
 12.4 Scour and protection against scour in front of waterfront structures
 12.5 Scour protection at piers and dolphins
 12.6 Installation of mineral impervious linings underwater and their connection to waterfront structures (R 204)
 12.7 Flood defence walls in seaports (R 165)
 12.8 Dumped moles and breakwaters (R 137)

13. **Dolphins (R 218)**
 13.1 General principles
 13.2 Design of dolphins
 13.3 Construction and arrangement of dolphins

14. **Inspection and monitoring of waterfront structures (R 193)**
 14.1 General
 14.2 Documentation
 14.3 Carrying out structural inspections
 14.4 Inspection intervals
 14.5 Maintenance management systems